Kobayashi T, Yoshinuma M, Hu W, Ida K
National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan.
The Graduate University for Advanced Studies, SOKENDAI, Toki 509-5292, Japan.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2408112121. doi: 10.1073/pnas.2408112121. Epub 2024 Nov 7.
A key ingredient for realizing a magnetically confined tritium-deuterium plasma fusion reactor is plasma heating by fusion-born high-energy helium ions, as a chained cycle of "nuclear burning." Efficient collisionless plasma heating by high-energy particles is anticipated when their energy is directly transferred to the plasma through waves. Those processes often involve nonlinear structure formations in phase-space, spanned by real-space and velocity-space coordinates, that significantly influence heating efficiency. To date, experimental knowledge of phase-space structure formation physics is severely limited, due to lack of experimental diagnostic schemes. Here, state-of-the-art hardware and software approaches for phase-space perturbative structure detection are introduced. A bifurcation in the phase-space structure formation is found, which affects the plasma heating efficiency. A confinement magnetic field structure is shown to be a potential knob for nuclear-burning control through phase-space manipulation.
实现磁约束氚 - 氘等离子体聚变反应堆的一个关键要素是通过聚变产生的高能氦离子进行等离子体加热,这是“核聚变燃烧”的一个链式循环。当高能粒子的能量通过波直接转移到等离子体时,有望实现高效的无碰撞等离子体加热。这些过程通常涉及在由实空间和速度空间坐标构成的相空间中形成非线性结构,这会显著影响加热效率。迄今为止,由于缺乏实验诊断方案,相空间结构形成物理的实验知识受到严重限制。在此,介绍了用于相空间微扰结构检测的最先进硬件和软件方法。发现了相空间结构形成中的一个分岔,它会影响等离子体加热效率。结果表明,约束磁场结构是通过相空间操纵来控制核聚变燃烧的一个潜在调节手段。