Poles Yonatan, Shi Songlin, Fineberg Jay
The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2411959121. doi: 10.1073/pnas.2411959121. Epub 2024 Nov 7.
Frictional slip between bodies having different elastic or geometrical properties (bimaterial interfaces) creates a unique type of rupture, bimaterial "slip pulses." These slip pulses propagate along the interfaces separating elastically different contacting bodies. They exhibit highly localized slip with accompanying local normal stress reduction. These pulses do not result from properties of "friction laws" but, instead, are formed via the elastic mismatch of the contacting bodies. Here, we experimentally study slip pulse dynamics, evolution, and structure in seven different bimaterial interfaces. We find that slip pulses are a major vehicle for frictional motion in bimaterial interfaces, they exist in well-defined velocity windows and undergo unstable growth consistent with theoretical predictions coined the "Adams instability." When scaled properly, slip pulses exhibit both universal spatial structure and growth dynamics. While slip pulse amplitudes vary considerably within different interfaces, this variation is, surprisingly, not highly dependent on the contrast of the elastic properties of the contacting materials. Instead, slip pulse amplitudes are closely related to the interfaces' aging properties and, hence, to material plasticity at the interface. As bimaterial interfaces are generic, these results are fundamentally important to both frictional dynamics and the dynamics of earthquakes within a wide class of natural faults.
具有不同弹性或几何特性的物体(双材料界面)之间的摩擦滑动会产生一种独特的破裂类型,即双材料“滑动脉冲”。这些滑动脉冲沿着分隔弹性不同的接触物体的界面传播。它们表现出高度局部化的滑动,并伴随着局部法向应力的降低。这些脉冲并非由“摩擦定律”的特性产生,而是通过接触物体的弹性失配形成的。在此,我们通过实验研究了七种不同双材料界面中的滑动脉冲动力学、演化和结构。我们发现滑动脉冲是双材料界面中摩擦运动的主要载体,它们存在于明确的速度窗口内,并经历与理论预测相符的不稳定增长,该理论被称为“亚当斯不稳定性”。经过适当缩放后,滑动脉冲呈现出普遍的空间结构和增长动力学。虽然滑动脉冲的幅度在不同界面中差异很大,但令人惊讶的是,这种差异并非高度依赖于接触材料弹性特性的对比度。相反,滑动脉冲的幅度与界面的老化特性密切相关,因此与界面处的材料塑性密切相关。由于双材料界面是普遍存在的,这些结果对于摩擦动力学以及广泛的天然断层内的地震动力学都具有根本重要性。