Pomyalov Anna, Barras Fabian, Roch Thibault, Brener Efim A, Bouchbinder Eran
Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel.
The Njord Centre, Department of Physics, University of Oslo, Oslo 0316, Norway.
Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2309374120. doi: 10.1073/pnas.2309374120. Epub 2023 Aug 17.
Self-healing slip pulses are major spatiotemporal failure modes of frictional systems, featuring a characteristic size [Formula: see text] and a propagation velocity [Formula: see text] ([Formula: see text] is time). Here, we develop a theory of slip pulses in realistic rate- and state-dependent frictional systems. We show that slip pulses are intrinsically unsteady objects-in agreement with previous findings-yet their dynamical evolution is closely related to their unstable steady-state counterparts. In particular, we show that each point along the time-independent [Formula: see text] line, obtained from a family of steady-state pulse solutions parameterized by the driving shear stress [Formula: see text], is unstable. Nevertheless, and remarkably, the [Formula: see text] line is a dynamic attractor such that the unsteady dynamics of slip pulses (when they exist)-whether growing ([Formula: see text]) or decaying ([Formula: see text])-reside on the steady-state line. The unsteady dynamics along the line are controlled by a single slow unstable mode. The slow dynamics of growing pulses, manifested by [Formula: see text], explain the existence of sustained pulses, i.e., pulses that propagate many times their characteristic size without appreciably changing their properties. Our theoretical picture of unsteady frictional slip pulses is quantitatively supported by large-scale, dynamic boundary-integral method simulations.
自愈合滑动脉冲是摩擦系统的主要时空失效模式,其特征尺寸为[公式:见原文],传播速度为[公式:见原文]([公式:见原文]为时间)。在此,我们针对实际的速率和状态依赖摩擦系统建立了一种滑动脉冲理论。我们表明,滑动脉冲本质上是不稳定的物体——这与先前的研究结果一致——但其动力学演化与不稳定的稳态对应物密切相关。特别是,我们表明,从由驱动剪应力[公式:见原文]参数化的稳态脉冲解族中获得的与时间无关的[公式:见原文]线上的每个点都是不稳定的。然而,值得注意的是,[公式:见原文]线是一个动态吸引子,使得滑动脉冲的不稳定动力学(当它们存在时)——无论是增长([公式:见原文])还是衰减([公式:见原文])——都位于稳态线上。沿该线的不稳定动力学由单个缓慢的不稳定模式控制。增长脉冲的缓慢动力学表现为[公式:见原文],这解释了持续脉冲的存在,即传播距离为其特征尺寸许多倍且其特性没有明显变化的脉冲。我们关于不稳定摩擦滑动脉冲的理论图景得到了大规模动态边界积分法模拟的定量支持。