Suppr超能文献

多组学方法揭示了米勒-迪克尔综合征中受影响的基因和通路。

Multi-Omics Approach Reveals Genes and Pathways Affected in Miller-Dieker Syndrome.

作者信息

Mahendran Gowthami, Breger Kurtis, McCown Phillip J, Hulewicz Jacob P, Bhandari Tulsi, Addepalli Balasubrahmanyam, Brown Jessica A

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.

Department of Internal Medicine, Division of Nephrology, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.

出版信息

Mol Neurobiol. 2025 Apr;62(4):5073-5094. doi: 10.1007/s12035-024-04532-7. Epub 2024 Nov 7.

Abstract

Miller-Dieker syndrome (MDS) is a rare neurogenetic disorder resulting from a heterozygous deletion of 26 genes in the MDS locus on human chromosome 17. MDS patients often die in utero and only 10% of those who are born reach 10 years of age. Current treatments mostly prevent complications and control seizures. A detailed understanding of the pathogenesis of MDS through gene expression studies would be useful in developing precise medical approaches toward MDS. To better understand MDS at the molecular level, we performed RNA sequencing on RNA and mass spectrometry on total protein isolated from BJ (non-MDS) cells and GM06097 (MDS) cells, which were derived from a healthy individual and an MDS patient, respectively. Differentially expressed genes (DEGs) at the RNA and protein levels involved genes associated with phenotypic features reported in MDS patients (CACNG4, ADD2, SPTAN1, SHANK2), signaling pathways (GABBR2, CAMK2B, TRAM-1), and nervous system development (CAMK2B, BEX1, ARSA). Functional assays validated enhanced calcium signaling, downregulated protein translation, and cell migration defects in MDS. Interestingly, overexpression of methyltransferase-like protein 16 (METTL16), a protein encoded in the MDS locus, restored defects in protein translation, phosphor states of mTOR (mammalian target of rapamycin) pathway regulators, and cell migration in MDS cells. Although DNA- and RNA-modifying enzymes were among the DEGs and the intracellular SAM/SAH ratio was eightfold lower in MDS cells, global nucleoside modifications remained unchanged. Thus, this study identified specific genes and pathways responsible for the gene expression changes, which could lead to better therapeutics for MDS patients.

摘要

米勒-迪克尔综合征(MDS)是一种罕见的神经遗传疾病,由人类17号染色体上MDS基因座的26个基因杂合缺失所致。MDS患者常在子宫内死亡,出生的患者中只有10%能活到10岁。目前的治疗主要是预防并发症和控制癫痫发作。通过基因表达研究详细了解MDS的发病机制,将有助于开发针对MDS的精准医疗方法。为了在分子水平上更好地理解MDS,我们对分别来自健康个体和MDS患者的BJ(非MDS)细胞和GM06097(MDS)细胞分离的RNA进行了RNA测序,并对总蛋白进行了质谱分析。RNA和蛋白质水平上的差异表达基因(DEG)涉及与MDS患者报道的表型特征相关的基因(CACNG4、ADD2、SPTAN1、SHANK2)、信号通路(GABBR2、CAMK2B、TRAM-1)和神经系统发育(CAMK2B、BEX1、ARSA)。功能试验验证了MDS中钙信号增强、蛋白质翻译下调和细胞迁移缺陷。有趣的是,MDS基因座编码的甲基转移酶样蛋白16(METTL16)的过表达恢复了MDS细胞中蛋白质翻译缺陷、雷帕霉素靶蛋白(mTOR)通路调节因子的磷酸化状态和细胞迁移。尽管DNA和RNA修饰酶属于差异表达基因,且MDS细胞内SAM/SAH比值低八倍,但整体核苷修饰仍未改变。因此,本研究确定了导致基因表达变化的特定基因和通路,这可能为MDS患者带来更好的治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/11880102/cdad5360153f/12035_2024_4532_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验