Suppr超能文献

脓毒症成年患者抗菌药物耐药风险模型的性能。

Performance of Risk Models for Antimicrobial Resistance in Adult Patients With Sepsis.

机构信息

Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, Missouri.

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St Louis, Missouri.

出版信息

JAMA Netw Open. 2024 Nov 4;7(11):e2443658. doi: 10.1001/jamanetworkopen.2024.43658.

Abstract

IMPORTANCE

The results of prediction models that stratify patients with sepsis and risk of resistant gram-negative bacilli (GNB) infections inform treatment guidelines. However, these models do not extrapolate well across hospitals.

OBJECTIVE

To assess whether patient case mix and local prevalence rates of resistance contributed to the variable performance of a general risk stratification GNB sepsis model for community-onset and hospital-onset sepsis across hospitals.

DESIGN, SETTING, AND PARTICIPANTS: This was a retrospective cohort study conducted from January 2016 and October 2021. Adult patients with sepsis at 10 acute-care hospitals in rural and urban areas across Missouri and Illinois were included. Inclusion criteria were blood cultures indicating sepsis, having received 4 days of antibiotic treatment, and having organ dysfunction (vasopressor use, mechanical ventilation, increased creatinine or bilirubin levels, and thrombocytopenia). Analyses were completed in April 2024.

EXPOSURE

The model included demographic characteristics, comorbidities, vital signs, laboratory values, procedures, and medications administered.

MAIN OUTCOMES AND MEASURES

Culture results were stratified for ceftriaxone-susceptible GNB (SS), ceftriaxone-resistant but cefepime-susceptible GNB (RS), and ceftriaxone- and cefepime-resistant GNB (RR). Negative cultures and other pathogens were labeled SS. Deep learning models were developed separately for community-onset (patient presented with sepsis) and hospital-onset (sepsis developed ≥48 hours after admission) sepsis. The models were tested across hospitals and patient subgroups. Models were assessed using area under the receiver operating characteristic curve (AUROC) and area under precision recall curve (AUPRC).

RESULTS

A total of 39 893 patients with 85 238 sepsis episodes (43 207 [50.7%] community onset; 42 031 [48.3%] hospital onset) were included. Median (IQR) age was 65 (54-74) years, 21 241 patients (53.2%) were male, and 18 830 (47.2%) had a previous episode of sepsis. RS contributed to 3.9% (1667 episodes) and 5.7% (2389 episodes) of community-onset and hospital-onset sepsis episodes, respectively, and RR contributed to 1.8% (796 episodes) and 3.9% (1626 episodes), respectively. Previous infections and exposure to antibiotics were associated with the risk of resistant GNB. For example, in community-onset sepsis, 375 RR episodes (47.1%), 420 RS episodes (25.2%) and 3483 of 40 744 (8.5%) SS episodes were among patients with resistance to antimicrobial drugs (P < .001). The AUROC and AUPRC results varied across hospitals and patient subgroups for both community-onset and hospital-onset sepsis. AUPRC values correlated with the prevalence rates of resistant GNB (R = 0.79; P = .001).

CONCLUSIONS AND RELEVANCE

In this cohort study of 39 893 patients with sepsis, variable model performance was associated with prevalence rates of antimicrobial resistance rather than patient case mix. This variability suggests caution is needed when using generalized models for predicting resistant GNB etiologies in sepsis.

摘要

重要性

分层脓毒症患者和耐革兰氏阴性菌(GNB)感染风险的预测模型的结果为治疗指南提供了信息。然而,这些模型在不同医院之间的外推效果不佳。

目的

评估患者病例组合和当地耐药率是否导致一般风险分层 GNB 脓毒症模型在不同医院的社区获得性和医院获得性脓毒症中的表现存在差异。

设计、地点和参与者:这是一项回顾性队列研究,于 2016 年 1 月至 2021 年 10 月进行。纳入了密苏里州和伊利诺伊州农村和城市地区的 10 家急性护理医院中患有脓毒症的成年患者。纳入标准为血培养提示脓毒症、接受了 4 天抗生素治疗以及存在器官功能障碍(使用升压药、机械通气、肌酐或胆红素水平升高和血小板减少)。分析于 2024 年 4 月完成。

暴露

模型包括人口统计学特征、合并症、生命体征、实验室值、操作和给予的药物。

主要结果和措施

根据对头孢曲松敏感的 GNB(SS)、头孢曲松耐药但头孢吡肟敏感的 GNB(RS)和头孢曲松和头孢吡肟耐药的 GNB(RR)对培养结果进行分层。阴性培养和其他病原体被标记为 SS。分别为社区获得性(患者出现脓毒症)和医院获得性(入院后≥48 小时发生脓毒症)脓毒症开发了深度学习模型。模型在不同医院和患者亚组中进行了测试。使用接受者操作特征曲线下面积(AUROC)和精度召回曲线下面积(AUPRC)评估模型。

结果

共纳入 39893 名患者,85238 例脓毒症发作(43207 例[50.7%]为社区获得性;42031 例[48.3%]为医院获得性)。中位(IQR)年龄为 65(54-74)岁,21241 名患者(53.2%)为男性,18830 名(47.2%)有过脓毒症发作。RS 分别占社区获得性和医院获得性脓毒症发作的 3.9%(1667 例)和 5.7%(2389 例),RR 分别占 1.8%(796 例)和 3.9%(1626 例)。先前感染和接触抗生素与耐 GNB 的风险相关。例如,在社区获得性脓毒症中,375 例 RR 发作(47.1%)、420 例 RS 发作(25.2%)和 40744 例中的 3483 例 SS 发作(8.5%)是在对抗菌药物耐药的患者中发生的(P<0.001)。AUROC 和 AUPRC 结果在社区获得性和医院获得性脓毒症的不同医院和患者亚组之间存在差异。AUPRC 值与耐 GNB 的流行率相关(R=0.79;P=0.001)。

结论和相关性

在这项对 39893 名脓毒症患者的队列研究中,模型性能的变化与抗生素耐药率有关,而与患者病例组合无关。这种变异性表明,在使用预测脓毒症中耐 GNB 病因的一般模型时需要谨慎。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验