Campbell Jeffrey I, Poblacion Ana, Sheward Richard
Department of Pediatrics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.
Curr Opin Pediatr. 2025 Feb 1;37(1):27-33. doi: 10.1097/MOP.0000000000001415. Epub 2024 Nov 4.
The growth of rich electronic health record (EHR) data and large health databases has introduced new opportunities to link individuals together into households and relational networks. These 'linked relational networks' hold promise for providing family-level care and studying intergenerational epidemiology and clinical outcomes. However, as linked relational networks become more commonly available in EHRs and research databases, it is critical to understand their challenges and limitations.
Matching algorithms are being used to create linked relational networks in EHR and health databases. Clinically, these algorithms have been most useful to provide dyadic maternal-newborn care. In research, studies using these algorithms investigate topics ranging from the pharmacoepidemiology of parental drug exposure on childhood health outcomes, to heritability of chronic conditions, to associations between parental and child healthcare access and service delivery. However, ethical and technical challenges continue to limit use of these algorithms. There is also a critical research gap in the external validity of these matching algorithms.
Linked relational networks are in widespread use in pediatric clinical care and research. More research is needed to understand the scope, limitations, and biases inherent in existing matching strategies.
丰富的电子健康记录(EHR)数据和大型健康数据库的增长带来了新的机遇,可将个体关联成家庭和关系网络。这些“关联关系网络”有望提供家庭层面的护理,并用于研究代际流行病学和临床结局。然而,随着关联关系网络在电子健康记录和研究数据库中越来越普遍,了解它们面临的挑战和局限性至关重要。
匹配算法正被用于在电子健康记录和健康数据库中创建关联关系网络。在临床上,这些算法对提供母婴二元护理最为有用。在研究中,使用这些算法的研究调查的主题范围广泛,从父母药物暴露对儿童健康结局的药物流行病学,到慢性病的遗传性,再到父母与儿童医疗保健获取及服务提供之间的关联。然而,伦理和技术挑战继续限制这些算法的使用。这些匹配算法的外部有效性也存在关键的研究空白。
关联关系网络在儿科临床护理和研究中广泛使用。需要更多研究来了解现有匹配策略中固有的范围、局限性和偏差。