Amber Charis, Göttemann Lucas T, Steele Ryan T, Petitjean Timothée M, Sarpong Richmond
Department of Chemistry, University of California, Berkeley, California 94720, United States.
J Org Chem. 2024 Dec 6;89(23):17655-17663. doi: 10.1021/acs.joc.4c02400. Epub 2024 Nov 7.
Given its relevance across numerous fields, reductive amination is one of the oldest and most widely used methods for amine synthesis. As a cornerstone of synthetic chemistry, it has largely remained unchanged since its discovery over a century ago. Herein, we report the mechanistically driven development of a complementary reaction, which reductively aminates the C-C σ-bond of carbonyls, not the carbonyl C-O π-bond, generating value-added linear and cyclic 3° amines in a modular fashion. Critical to our success were mechanistic insights that enabled us to modulate the resting state of a borane catalyst, minimize deleterious disproportionation of a hydroxylamine nitrogen source, and control the migratory selectivity of a key nitrenoid reactive intermediate. Experiments support the reaction occurring through a reductive amination/reductive Stieglitz cascade, via a ketonitrone, which can be interrupted under catalyst control to generate valuable ,-disubstituted hydroxylamines. The method reported herein enables net transformations that would otherwise require lengthy synthetic sequences using pre-existing technologies. This is highlighted by its application to a two-step protocol for the valorization of hydrocarbon feedstocks, the late-stage C-C amination of complex molecules, diversity-oriented synthesis of isomeric amines from a single precursor, and transposition of nitrogen to different positions within a heterocycle.
鉴于其在众多领域的相关性,还原胺化是胺合成中最古老且应用最广泛的方法之一。作为合成化学的基石,自一个多世纪前被发现以来,它在很大程度上保持不变。在此,我们报告了一种互补反应的机理驱动开发,该反应对羰基的C-C σ键而非羰基的C-O π键进行还原胺化,以模块化方式生成增值的线性和环状叔胺。我们成功的关键在于机理上的见解,这些见解使我们能够调节硼烷催化剂的静止状态,最大限度地减少羟胺氮源的有害歧化,并控制关键氮宾反应中间体的迁移选择性。实验支持该反应通过还原胺化/还原施蒂格利茨级联反应,经由酮硝酮发生,该反应可在催化剂控制下中断以生成有价值的α,α-二取代羟胺。本文报道的方法能够实现净转化,否则使用现有技术需要冗长的合成序列。这通过其在烃类原料增值的两步方案、复杂分子的后期C-C胺化、从单一前体进行异构体胺的多样性导向合成以及氮在杂环内不同位置的转位中的应用得到了突出体现。