Department of Electrical and Computer Engineering, Marquette University, Milwaukee, Wisconsin 53201-1881, United States.
Department of Electrical Engineering, Stanford University, Stanford, California 94305-4075, United States.
ACS Sens. 2024 Nov 22;9(11):6247-6256. doi: 10.1021/acssensors.4c02200. Epub 2024 Nov 7.
This work presents an adaptive sensor signal-processing approach to enable quantification, using a single gas sensor or a small sensor array, of multianalyte mixtures of aromatic hydrocarbons in the presence of various interferents and humidity for environmental-monitoring applications. Dynamic sensor responses are analyzed by extracting multivariable sensing parameters to provide necessary sensitivity and selectivity. This is achieved by integrating the Levenberg-Marquardt-modified, exponentially weighted, recursive-least-squares-estimation (LM-modified EW-RLSE) algorithm and principal-component analysis (PCA). Achieving measured detection limits as low as 3 μg/L (≤1 ppm by volume) for 6 target analytes, the system exhibits excellent PCA cluster separation for all analytes in the mixtures, with reliable identification and accurate quantification, even in the presence of various interferents. Concentration errors of approximately ±5% are obtained for mixtures containing up to 6 BTEX compounds (including chemical isomers) and up to 4 interferents. Additionally, the study investigates the impact of humidity on the polymer/plasticizer-coated shear-horizontal surface acoustic wave (SH-SAW) sensors, demonstrating accurate concentration estimation in a relative humidity range from dry nitrogen to 65%. This sensing-and-multivariate-signal-processing approach is a promising candidate for reliable environmental monitoring in real-world applications.
本工作提出了一种自适应传感器信号处理方法,使用单个气体传感器或小型传感器阵列,在存在各种干扰物和湿度的情况下,对多芳烃烃混合物进行定量分析,用于环境监测应用。通过提取多变量传感参数来分析动态传感器响应,以提供必要的灵敏度和选择性。这是通过集成 Levenberg-Marquardt 修正的、指数加权的、递归最小二乘估计 (LM 修正 EW-RLSE) 算法和主成分分析 (PCA) 来实现的。该系统实现了低至 3μg/L(体积比≤1ppm)的测量检测限,对混合物中的所有分析物都表现出出色的 PCA 聚类分离,即使存在各种干扰物,也能进行可靠的识别和准确的定量。对于包含多达 6 种 BTEX 化合物(包括化学异构体)和多达 4 种干扰物的混合物,浓度误差约为±5%。此外,该研究还调查了湿度对聚合物/增塑剂涂层切向水平表面声波 (SH-SAW) 传感器的影响,证明了在相对湿度从干燥氮气到 65%的范围内能够准确估计浓度。这种传感和多元信号处理方法是在实际应用中进行可靠环境监测的有前途的候选方法。