Suppr超能文献

应用具有可变重要性的神经网络和细胞因子生物标志物优化吸烟分类

Optimization of Smoking Classification by Applying Neural Network with Variable Importance Using Cytokine Biomarkers.

作者信息

Saharan Seema Singh, Nagar Pankaj, Creasy Kate Townsend, Stock Eveline O, Feng James, Malloy Mary J, Kane John P

机构信息

Department of Clinical Pharmacy University of California San Francisco, USA.

UCSF Kane Lab San Francisco, USA.

出版信息

Proc (Int Conf Comput Sci Comput Intell). 2023 Dec;2023:661-670. doi: 10.1109/csci62032.2023.00115. Epub 2024 Jul 19.

Abstract

Cigarette smoking is a preventable epidemic that is a leading cause of death. It increases the risk of coronary heart disease, stroke, lung cancer, chronic obstructive lung diseases etc., multifold. Smoking tobacco is not only injurious to oneself but also to those who are exposed second hand. Smoking induces endothelial dysfunction via inflammatory cytokines that can be quantified precisely. Cytokines can be leveraged as powerful predictive biomarkers for identifying risk of potential diseases. Current advances in biomarker research are providing substantive evidence of the roles of cytokines in disease. This is driving precision-based diagnosis and translational therapeutic interventions. Innovative machine algorithms (ML) are pioneering transformative changes in the field of medical research. This research implements the Neural Networks (NN) algorithm to classify smokers versus non-smokers using 63 cytokines as predictor features. In addition to the fact that NN is a generative algorithm, which makes it a very powerful tool to achieve the objective of this differentiation, techniques like cross validation and hyperparameter tuning improve the efficacy of the algorithm. The study identified the 10 most impactful predictor features that contributed to the classification and then used these to characterize smokers versus non-smokers. Primarily, the study constructed and investigated two classifiers, of which the first implemented NN using the entire set of 63 cytokines and the second using 10 most informative cytokines. The performance of the first classifier, implemented using 63 cytokines, evaluated by area under receiver operating characteristic (AUROC), was extremely good with an AUROC score of .949 and 95% Confidence Interval (CI) (.923,.974). The second classifier that used the 10 most impactful cytokines with regard to the classification, demonstrated an exemplary performance, with an AUROC score of .995 and a 95% CI (.991,1). The 10 most impactful cytokines from the aspect of smoker versus non-smoker differentiation, listed in order of importance, include: I-TAC, IL-22, IL-2R, IL-3, HGF, IL-18, G-CSF-CSF-3, MIF, SDF-1alpha, MMP-1. To gain a deeper understanding of the effect of smoking on cytokine levels, a 2-sample independent t test was performed, ascertaining the statistical significance of the 63 cytokine levels in smokers versus non-smokers. Machine Learning using biomarkers such as cytokines will enhance the ability to predict the advent of a disease and its outcome, and lead to novel treatment strategies.

摘要

吸烟是一种可预防的流行病,是主要的死亡原因。它会成倍增加患冠心病、中风、肺癌、慢性阻塞性肺疾病等的风险。吸烟不仅对吸烟者自身有害,对那些接触二手烟的人也有害。吸烟通过可精确量化的炎性细胞因子诱导内皮功能障碍。细胞因子可作为强大的预测生物标志物,用于识别潜在疾病的风险。生物标志物研究的当前进展为细胞因子在疾病中的作用提供了大量证据。这推动了基于精准的诊断和转化治疗干预。创新的机器学习(ML)算法正在医学研究领域开创变革性变化。本研究采用神经网络(NN)算法,以63种细胞因子作为预测特征对吸烟者和非吸烟者进行分类。除了NN是一种生成算法,使其成为实现这种区分目标的非常强大的工具之外,交叉验证和超参数调整等技术提高了算法的效能。该研究确定了对分类有贡献的10个最具影响力的预测特征,然后用这些特征来表征吸烟者和非吸烟者。首先,该研究构建并研究了两个分类器,其中第一个使用全部63种细胞因子实现NN,第二个使用10个信息最丰富的细胞因子。使用63种细胞因子实现的第一个分类器的性能,通过受试者工作特征曲线下面积(AUROC)评估,非常出色,AUROC评分为0.949,95%置信区间(CI)为(0.923,0.974)。第二个分类器使用了对分类最具影响力的10种细胞因子,表现堪称典范,AUROC评分为0.995,95%CI为(0.991,1)。从吸烟者与非吸烟者区分的角度来看,按重要性排序的10个最具影响力的细胞因子包括:γ-干扰素诱导蛋白-10(I-TAC)、白细胞介素-(IL)-22、IL-2受体(IL-2R)、IL-3、肝细胞生长因子(HGF)、IL-18、粒细胞集落刺激因子(G-CSF)-集落刺激因子-(CSF)-3、巨噬细胞移动抑制因子(MIF)、基质细胞衍生因子-1α(SDF-α)、基质金属蛋白酶-1(MMP-1)。为了更深入了解吸烟对细胞因子水平的影响,进行了两样本独立t检验,确定吸烟者与非吸烟者中63种细胞因子水平的统计学显著性。使用细胞因子等生物标志物的机器学习将增强预测疾病发生及其结果的能力,并带来新的治疗策略。

相似文献

本文引用的文献

3
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease.卡那奴单抗治疗动脉粥样硬化疾病的抗炎疗法。
N Engl J Med. 2017 Sep 21;377(12):1119-1131. doi: 10.1056/NEJMoa1707914. Epub 2017 Aug 27.
4
GLUMIP 2.0: Software for Planning Internal Pilots.GLUMIP 2.0:内部试点规划软件。
J Stat Softw. 2008 Nov;28(7). doi: 10.18637/jss.v028.i07. Epub 2008 Nov 13.
9
Historical insights into cytokines.细胞因子的历史见解
Eur J Immunol. 2007 Nov;37 Suppl 1(Suppl 1):S34-45. doi: 10.1002/eji.200737772.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验