Suppr超能文献

使用加权基因共表达网络分析评估肺纤维化

Assessment of pulmonary fibrosis using weighted gene co-expression network analysis.

作者信息

Drake Christina, Zobl Walter, Escher Sylvia E

机构信息

Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Hannover, Germany.

出版信息

Front Toxicol. 2024 Oct 24;6:1465704. doi: 10.3389/ftox.2024.1465704. eCollection 2024.

Abstract

For many industrial chemicals toxicological data is sparse regarding several regulatory endpoints, so there is a high and often unmet demand for NAMs that allow for screening and prioritization of these chemicals. In this proof of concept case study we propose multi-gene biomarkers of compounds' ability to induce lung fibrosis and demonstrate their application . For deriving these biomarkers we used weighted gene co-expression network analysis to reanalyze a study where the time-dependent pulmonary gene-expression in mice treated with bleomycin had been documented. We identified eight modules of 58 to 273 genes each which were particularly activated during the different phases (inflammatory; acute and late fibrotic) of the developing fibrosis. The modules' relation to lung fibrosis was substantiated by comparison to known markers of lung fibrosis from DisGenet. Finally, we show the modules' application as biomarkers of chemical inducers of lung fibrosis based on an study of four diketones. Clear differences could be found between the lung fibrosis inducing diketones and other compounds with regard to their tendency to induce dose-dependent increases of module activation as determined using a previously proposed differential activation score and the fraction of differentially expressed genes in the modules. Accordingly, this study highlights the potential use of composite biomarkers mechanistic screening for compound-induced lung fibrosis.

摘要

对于许多工业化学品而言,关于若干监管终点的毒理学数据匮乏,因此对于能够对这些化学品进行筛选和排序的NAMs存在着强烈且往往未得到满足的需求。在本概念验证案例研究中,我们提出了化合物诱导肺纤维化能力的多基因生物标志物,并展示了它们的应用。为了推导这些生物标志物,我们使用加权基因共表达网络分析重新分析了一项研究,该研究记录了用博来霉素处理的小鼠的时间依赖性肺基因表达。我们识别出八个模块,每个模块包含58至273个基因,这些基因在纤维化发展的不同阶段(炎症期、急性和晚期纤维化期)特别活跃。通过与来自DisGenet的已知肺纤维化标志物进行比较,证实了这些模块与肺纤维化的关系。最后,基于对四种二酮的研究,我们展示了这些模块作为肺纤维化化学诱导剂生物标志物的应用。就使用先前提出的差异激活评分和模块中差异表达基因的比例所确定的诱导模块激活的剂量依赖性增加趋势而言,在诱导肺纤维化的二酮与其他化合物之间可发现明显差异。因此,本研究突出了复合生物标志物在化合物诱导肺纤维化机制筛选中的潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2938/11540828/b868a825b714/ftox-06-1465704-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验