Suppr超能文献

羟基红花黄色素A体外通过糖酵解途径促进缺血/再灌注损伤的脑微血管内皮细胞血管生成。

Hydroxysafflor Yellow A promotes angiogenesis of brain microvascular endothelial cells from ischemia/reperfusion injury via glycolysis pathway in vitro.

作者信息

Ruan Juxuan, Wang Lei, Wang Ning, Huang Ping, Chang Dennis, Zhou Xian, Seto Saiwang, Li Dan, Hou Jincai

机构信息

Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China.

Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China.

出版信息

J Stroke Cerebrovasc Dis. 2025 Jan;34(1):108107. doi: 10.1016/j.jstrokecerebrovasdis.2024.108107. Epub 2024 Nov 7.

Abstract

BACKGROUND

Angiogenesis of brain microvascular endothelial cells (BMECs) after cerebral ischemia was conducive to improving the blood supply of ischemia tissues, which was upregulated by glycolysis. Hydroxysafflor Yellow A (HSYA) mends damaged tissues through increasing angiogenesis.

METHODS

HSYA treated proliferation, migration and angiogenesis of BMECs in vitro in vitro during OGD/R. HSYA regulated the key enzymes of glycolysis, such as hexokinase 2 (HK2) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), glucose uptake and products (pyruvate, ATP and lactate) were detected by western blot and kits, respectively. Scratch wound assay, transwell, tube formation and spheroid sprouting were used to explore the pathway that HSYA recovered migration and angiogenesis of BMECs. We evaluated the potential target of HSYA promoting glycolysis via molecular docking, drug affinity responsive target stability (DARTS) and cellular thermal shift assay (CETSA).

RESULTS

HSYA promoted the proliferation, migration, tube formation and spheroid sprouting of BMECs during OGD/R, and stimulated the expression of tip phenotype marker protein (CD34), and the receptor (Notch-1) that regulated the differentiation of endothelial cells into tip/stalk phenotype. In glycolysis, PFKFB3 expression was upregulated by HSYA; HSYA also improved ATP and pyruvate levels, as well as lactate release after OGD/R. Finally, upregulating VEGFA and p-VEGFR2 of HSYA was weakened because of suppressing glycolysis; the HSYA's improvement of BMECs migration and angiogenesis was attenuated under the inhibition of glycolysis, which confirmed that HSYA were upregulating angiogenesis and expression of VEGFA/VEGFR2 by glycolysis pathway. The result about molecular docking, DARTS and CETSA suggested that PFKFB3 was the possible target of HSYA.

CONCLUSION

HSYA promotes angiogenesis of BMECs in vitro through the glycolysis mediated VEGFA/VEGFR2 pathway, and PFKFB3 is the potential target of HSYA to heighten glycolysis.

摘要

背景

脑缺血后脑微血管内皮细胞(BMECs)的血管生成有利于改善缺血组织的血液供应,其通过糖酵解上调。羟基红花黄色素A(HSYA)通过增加血管生成来修复受损组织。

方法

在氧糖剥夺/复氧(OGD/R)期间,HSYA在体外处理BMECs的增殖、迁移和血管生成。HSYA调节糖酵解的关键酶,如己糖激酶2(HK2)和6-磷酸果糖-2-激酶/果糖-2,6-二磷酸酶3(PFKFB3),分别通过蛋白质免疫印迹法和试剂盒检测葡萄糖摄取及产物(丙酮酸、三磷酸腺苷(ATP)和乳酸)。采用划痕试验、Transwell小室实验、管腔形成实验和球体发芽实验来探究HSYA恢复BMECs迁移和血管生成的途径。我们通过分子对接、药物亲和响应靶点稳定性(DARTS)和细胞热位移分析(CETSA)评估了HSYA促进糖酵解的潜在靶点。

结果

在OGD/R期间,HSYA促进了BMECs的增殖、迁移、管腔形成和球体发芽,并刺激了顶端表型标记蛋白(CD34)以及调节内皮细胞分化为顶端/柄状表型的受体(Notch-1)的表达。在糖酵解过程中,HSYA上调了PFKFB3的表达;HSYA还提高了OGD/R后的ATP和丙酮酸水平以及乳酸释放。最后,由于抑制糖酵解,HSYA对血管内皮生长因子A(VEGFA)和磷酸化血管内皮生长因子受体2(p-VEGFR2)的上调作用减弱;在糖酵解受到抑制的情况下,HSYA对BMECs迁移和血管生成的改善作用减弱,这证实了HSYA通过糖酵解途径上调血管生成以及VEGFA/VEGFR2的表达。分子对接、DARTS和CETSA的结果表明,PFKFB3是HSYA的可能靶点。

结论

HSYA通过糖酵解介导的VEGFA/VEGFR2途径促进体外BMECs的血管生成,且PFKFB3是HSYA增强糖酵解的潜在靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验