Henan Key Laboratory of Big Data Analysis and Processing, Henan Engineering Laboratory of Spatial Information Processing, School of Computer and Information Engineering, Henan University, Kaifeng, 475004, China.
Sci Rep. 2024 Nov 8;14(1):27193. doi: 10.1038/s41598-024-77412-8.
Predicting the backbone torsion angles corresponding to each residue of a protein from its amino acid sequence alone is a challenging problem in computational biology. Existing torsion angle predictors mainly use profile features, which are generated by performing time-consuming multiple sequence alignments, for torsion angle prediction. Compared with traditional profile features, embedding features from pretrained protein language models have significant advantages in prediction performance and computational speed. However, embedding features usually have higher dimensions and different embedding features have significantly different dimensions. To this end, we design a novel parameter-efficient deep torsion angle predictor, PHAngle, specifically for embedding features. PHAngle is a parameterized hypercomplex convolutional network consisting of parameterized hypercomplex linear and convolutional layers whose weight parameters can be characterized as the sum of Kronecker products. Experimental results on six benchmark test sets including TEST2016, TEST2018, TEST2020_HQ, CASP12, CASP13 and CASP-FM demonstrate that PHAngle achieves the state-of-the-art torsion angle performance with the fewest parameters compared to the nine existing methods. The source code and datasets are available at https://github.com/fengtuan/PHAngle .
从蛋白质的氨基酸序列预测对应于每个残基的主链扭转角是计算生物学中的一个具有挑战性的问题。现有的扭转角预测器主要使用轮廓特征,这些特征是通过进行耗时的多序列比对生成的,用于扭转角预测。与传统的轮廓特征相比,来自预训练的蛋白质语言模型的嵌入特征在预测性能和计算速度方面具有显著优势。然而,嵌入特征通常具有更高的维度,并且不同的嵌入特征的维度有很大的不同。为此,我们设计了一种新颖的参数高效的深度扭转角预测器 PHAngle,专门用于嵌入特征。PHAngle 是一个参数化的超复数卷积网络,由参数化的超复数线性和卷积层组成,其权参数可以表示为 Kronecker 积的和。在包括 TEST2016、TEST2018、TEST2020_HQ、CASP12、CASP13 和 CASP-FM 在内的六个基准测试集上的实验结果表明,与现有的九种方法相比,PHAngle 实现了最先进的扭转角性能,同时使用的参数最少。源代码和数据集可在 https://github.com/fengtuan/PHAngle 上获得。