Suppr超能文献

用于化学电阻式气体传感器的模式识别算法的气体检测进展

Advances in Gas Detection of Pattern Recognition Algorithms for Chemiresistive Gas Sensor.

作者信息

Zhou Guangying, Du Bingsheng, Zhong Jie, Chen Le, Sun Yuyu, Yue Jia, Zhang Minglang, Long Zourong, Song Tao, Peng Bo, Tang Bin, He Yong

机构信息

Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing 400054, China.

Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.

出版信息

Materials (Basel). 2024 Oct 24;17(21):5190. doi: 10.3390/ma17215190.

Abstract

Gas detection and monitoring are critical to protect human health and safeguard the environment and ecosystems. Chemiresistive sensors are widely used in gas monitoring due to their ease of fabrication, high customizability, mechanical flexibility, and fast response time. However, with the rapid development of industrialization and technology, the main challenges faced by chemiresistive gas sensors are poor selectivity and insufficient anti-interference stability in complex application environments. In order to overcome these shortcomings of chemiresistive gas sensors, the pattern recognition method is emerging and is having a great impact in the field of sensing. In this review, we focus systematically on the advancements in the field of data processing methods for feature extraction, such as the methods of determining the characteristics of the original response curve, the curve fitting parameters, and the transform domain. Additionally, we emphasized the developments of traditional recognition algorithms and neural network algorithm in gas discrimination and analyzed the advantages through an extensive literature review. Lastly, we summarized the research on chemiresistive gas sensors and provided prospects for future development.

摘要

气体检测与监测对于保护人类健康以及维护环境和生态系统至关重要。由于其易于制造、高度可定制、机械柔韧性好以及响应时间快,电阻式传感器被广泛应用于气体监测。然而,随着工业化和技术的快速发展,电阻式气体传感器面临的主要挑战是在复杂应用环境中选择性差和抗干扰稳定性不足。为了克服电阻式气体传感器的这些缺点,模式识别方法应运而生,并在传感领域产生了重大影响。在这篇综述中,我们系统地关注了用于特征提取的数据处理方法领域的进展,例如确定原始响应曲线特征、曲线拟合参数和变换域的方法。此外,我们强调了传统识别算法和神经网络算法在气体判别方面的发展,并通过广泛的文献综述分析了其优势。最后,我们总结了电阻式气体传感器的研究,并展望了未来的发展前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f31b/11547245/6ae6632ea228/materials-17-05190-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验