Suppr超能文献

MSMTRIU-Net:一种基于深度学习的利用多源多时态遥感影像识别水稻种植区的方法。

MSMTRIU-Net: Deep Learning-Based Method for Identifying Rice Cultivation Areas Using Multi-Source and Multi-Temporal Remote Sensing Images.

作者信息

Wang Manlin, Ma Xiaoshuang, Zheng Taotao, Su Ziqi

机构信息

School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China.

出版信息

Sensors (Basel). 2024 Oct 28;24(21):6915. doi: 10.3390/s24216915.

Abstract

Identifying rice cultivation areas in a timely and accurate manner holds great significance in comprehending the overall distribution pattern of rice and formulating agricultural policies. The remote sensing observation technique provides a convenient means to monitor the distribution of rice cultivation areas on a large scale. Single-source or single-temporal remote sensing images are often used in many studies, which makes the information of rice in different types of images and different growth stages hard to be utilized, leading to unsatisfactory identification results. This paper presents a rice cultivation area identification method based on a deep learning model using multi-source and multi-temporal remote sensing images. Specifically, a U-Net based model is employed to identify the rice planting areas using both the Landsat-8 optical dataset and Sentinel-1 Polarimetric Synthetic Aperture Radar (PolSAR) dataset; to take full into account of the spectral reflectance traits and polarimetric scattering traits of rice in different periods, multiple image features from multi-temporal Landsat-8 and Sentinel-1 images are fed into the network to train the model. The experimental results on China's Sanjiang Plain demonstrate the high classification precisions of the proposed Multi-Source and Multi-Temporal Rice Identification U-Net (MSMTRIU-NET) and that inputting more information from multi-source and multi-temporal images into the network can indeed improve the classification performance; further, the classification map exhibits greater continuity, and the demarcations between rice cultivation regions and surrounding environments reflect reality more accurately.

摘要

及时、准确地识别水稻种植区域对于了解水稻的总体分布格局和制定农业政策具有重要意义。遥感观测技术为大规模监测水稻种植区域的分布提供了便利手段。许多研究中常使用单源或单时相遥感影像,这使得不同类型影像和不同生长阶段的水稻信息难以得到充分利用,导致识别结果不尽人意。本文提出了一种基于深度学习模型的多源多时态遥感影像水稻种植区域识别方法。具体而言,采用基于U-Net的模型,利用Landsat-8光学数据集和哨兵-1号极化合成孔径雷达(PolSAR)数据集来识别水稻种植区域;为充分考虑水稻在不同时期的光谱反射特征和极化散射特征,将多时态Landsat-8和哨兵-1号影像的多个图像特征输入网络来训练模型。在中国三江平原的实验结果表明,所提出的多源多时态水稻识别U-Net(MSMTRIU-NET)具有较高的分类精度,并且将更多多源多时态影像信息输入网络确实可以提高分类性能;此外,分类图具有更高的连续性,水稻种植区域与周边环境之间的分界线更准确地反映了实际情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5526/11548646/f85239cd4e5b/sensors-24-06915-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验