Song Xinzhong, Man Jia, Zhang Xiangkuan, Wang Jiali, Zhang Yongqi, Li Jianyong, Du Jun, Chen Yuanyuan, Li Jianfeng, Chen Yuguo
Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, P. R. China.
Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, 250061, P. R. China.
Small. 2025 Feb;21(6):e2406233. doi: 10.1002/smll.202406233. Epub 2024 Nov 9.
Zwitterionic polymer brushes are not a practical choice since their ionic response mechanisms are unclear, despite their great potential for surface antifouling modification. Therefore, atomic force microscopy and molecular dynamics simulations investigated the ionic response of the surface electrical properties, hydration properties, and protein adhesion of three types of zwitterionic brushes. The surface of PMPC (poly(2-methacryloyloxyethyl phosphorylcholine)) and PSBMA (poly(sulfobetaine methacrylate)) zwitterionic polymer brushes in salt solution exhibits a significant accumulation of cations, which results in a positive shift in the surface potential. In contrast, the surface of PSBMA polymer brushes demonstrates no notable change in potential. Furthermore, divalent Ca enhances protein adhesion to polymer brushes by Ca bridges. Conversely, monovalent Na diminishes the number of salt bridges between PSBMA and PCBMA (poly(carboxybetaine methacrylate)) zwitterionic polymer brushes and proteins via a competitive adsorption mechanism, thereby reducing protein adhesion. A summary of polymer brush material selection and design concepts in a salt solution environment is provided based on the salt response law of protein adhesion resistance of various zwitterionic materials. This work closes a research gap on the response mechanism of zwitterionic polymer brushes' antifouling performance in a salt solution environment, significantly advancing the practical use of these brushes.
两性离子聚合物刷不是一个实际的选择,因为尽管它们在表面防污改性方面有很大潜力,但其离子响应机制尚不清楚。因此,原子力显微镜和分子动力学模拟研究了三种类型两性离子刷的表面电学性质、水化性质和蛋白质粘附的离子响应。聚(2-甲基丙烯酰氧基乙基磷酰胆碱)(PMPC)和聚(甲基丙烯酰基磺酸甜菜碱)(PSBMA)两性离子聚合物刷在盐溶液中的表面表现出阳离子的显著积累,这导致表面电位正向偏移。相比之下,PSBMA聚合物刷的表面电位没有明显变化。此外,二价钙离子通过钙离子桥增强蛋白质与聚合物刷的粘附。相反,单价钠离子通过竞争吸附机制减少PSBMA和聚(甲基丙烯酰基羧酸甜菜碱)(PCBMA)两性离子聚合物刷与蛋白质之间的盐桥数量,从而降低蛋白质粘附。基于各种两性离子材料蛋白质抗粘附的盐响应规律,总结了盐溶液环境中聚合物刷材料的选择和设计概念。这项工作填补了两性离子聚合物刷在盐溶液环境中防污性能响应机制的研究空白,显著推动了这些刷子的实际应用。