Khan Mansoor, Ahmad Shahid, Alzahrani Khalid A, Khan Sher Bahadar
Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
Int J Biol Macromol. 2024 Dec;283(Pt 2):137300. doi: 10.1016/j.ijbiomac.2024.137300. Epub 2024 Nov 7.
The discharge of environmental pollutants requires intellectual and rapid solutions to convert them into safer products. Simultaneously, the high energy demands underscore the imperative importance of generating sufficient green energy to fulfill human needs. This study focused on metal nanoparticles (MNPs) decoration on polymeric beads (BDs), employing orange peel derived carbon black (OrP) and sodium alginate polymer (Alg). The resulting Alg-OrP-BDs serve as a versatile platform for the adsorption of different metal ions and their treatment with a potent reducing agent (NaBH) yielding modified BDs catalysts: Ag@Alg-OrP-BDs, Ni@Alg-OrP-BDs, Co@Alg-OrP-BDs, Fe@Alg-OrP-BDs, and Cu@Alg-OrP-BDs. These synthesized nanocomposite catalysts were characterized and exhibit remarkable catalytic reduction capabilities against various nitrophenols and dyes. Notably, Cu@Alg-OrP-BDs emerges as an outstanding catalyst, demonstrating high efficiency in the (>98 %) reduction of 4-nitrophenol and methyl orange with the rates of 1.568 min and 2.185 min, respectively. Furthermore, its parametric study was investigated to explore the efficiency of the selected catalyst in detail. Similarly, the Cu@Alg-OrP-BDs also enhance hydrogen gas production in various conditions, achieving a rate of 1620.37 mL g of catalyst min. The purity of the hydrogen was determined using a GC-TCD system. Hence, this study pioneers the development and thorough examination of the Cu@Alg-OrP-BDs catalyst, showcasing its exceptional activity and recyclability.
环境污染物的排放需要明智且迅速的解决方案,将其转化为更安全的产品。与此同时,高能源需求凸显了产生足够绿色能源以满足人类需求的紧迫性。本研究聚焦于在聚合物微珠(BDs)上负载金属纳米颗粒(MNPs),采用橙皮衍生炭黑(OrP)和海藻酸钠聚合物(Alg)。所得的Alg-OrP-BDs作为一个通用平台,用于吸附不同的金属离子并用强还原剂(NaBH)进行处理,从而得到改性的BDs催化剂:Ag@Alg-OrP-BDs、Ni@Alg-OrP-BDs、Co@Alg-OrP-BDs、Fe@Alg-OrP-BDs和Cu@Alg-OrP-BDs。对这些合成的纳米复合催化剂进行了表征,它们对各种硝基苯酚和染料表现出显著的催化还原能力。值得注意的是,Cu@Alg-OrP-BDs成为一种出色的催化剂,在4-硝基苯酚和甲基橙的还原反应中分别以1.568分钟和2.185分钟的速率展现出高于98%的高效率。此外,还对其进行了参数研究以详细探究所选催化剂的效率。同样,Cu@Alg-OrP-BDs在各种条件下也能提高氢气产量,达到1620.37 mL g催化剂分钟的速率。使用气相色谱 - 热导检测系统测定了氢气的纯度。因此,本研究率先开发并深入研究了Cu@Alg-OrP-BDs催化剂,展示了其卓越的活性和可回收性。