自动构建分子相互作用网络计算模拟的 Petri 网模型。
Automatic construction of Petri net models for computational simulations of molecular interaction network.
机构信息
Department of Dermatology and Venereal Disease, Xuan Wu Hospital, Beijing, China.
China National Center for Bioinformation, Beijing, China.
出版信息
NPJ Syst Biol Appl. 2024 Nov 9;10(1):131. doi: 10.1038/s41540-024-00464-z.
Petri nets are commonly applied in modeling biological systems. However, construction of a Petri net model for complex biological systems is often time consuming, and requires expertise in the research area, limiting their application. To address this challenge, we developed GINtoSPN, an R package that automates the conversion of multi-omics molecular interaction network extracted from the Global Integrative Network (GIN) into Petri nets in GraphML format. These GraphML files can be directly used for Signaling Petri Net (SPN) simulation. To demonstrate the utility of this tool, we built a Petri net model for neurofibromatosis type I. Simulation of NF1 gene knockout, compared to normal skin fibroblast cells, revealed persistent accumulation of Ras-GTPs as expected. Additionally, we identified several other genes substantially affected by the loss of NF1's function, exhibiting individual-specific variability. These results highlight the effectiveness of GINtoSPN in streamlining the modeling and simulation of complex biological systems.
Petri 网常用于生物系统建模。然而,构建复杂生物系统的 Petri 网模型通常很耗时,并且需要在研究领域的专业知识,限制了它们的应用。为了解决这个挑战,我们开发了 GINtoSPN,这是一个 R 包,可以自动将从 Global Integrative Network (GIN) 中提取的多组学生物分子相互作用网络转换为 GraphML 格式的 Petri 网。这些 GraphML 文件可以直接用于信号 Petri 网 (SPN) 模拟。为了展示该工具的实用性,我们构建了一个用于神经纤维瘤病 I 型的 Petri 网模型。对 NF1 基因敲除与正常皮肤成纤维细胞的模拟,如预期的那样,揭示了 Ras-GTP 的持续积累。此外,我们还发现了其他几个受 NF1 功能丧失影响的基因,表现出个体特异性的可变性。这些结果突出了 GINtoSPN 在简化复杂生物系统的建模和模拟方面的有效性。