Rukdee Surangkhana
Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, 85748, Garching, Germany.
Sci Rep. 2024 Nov 9;14(1):27356. doi: 10.1038/s41598-024-78071-5.
Studying the atmospheres of exoplanets is one of the most promising ways to learn about distant worlds beyond our solar system. The composition of an exoplanet's atmosphere can provide critical insights into its geology and potential habitability. For instance, the presence of certain molecules such as water vapor, oxygen, or methane have been proposed to indicate the possibility of life. From an observation point of view, over the past fifteen years, significant progress has been made in characterizing exoplanetary atmospheres. This work reviews recent developments in ground-based high-resolution spectroscopic instruments that make it possible to analyze distant atmospheres in great detail. High-resolution transmission spectroscopy, one of the most effective methods used, has examined the atmospheres of Jupiter-like and is pushing towards the smaller, sub-Neptunian exoplanets. Numerous molecules have been detected using this technique, including . We explore the intriguing possibilities that lie ahead for future ground-based instrumentation, particularly in the context of detecting biologically relevant molecules within Earth-analog exoplanetary atmospheres including molecular oxygen ( ). With detailed exposure time calculations for detecting we find that at the same exposure time spectral resolution of 300,000 reaches higher significance compared to 100,000. The exposure time and therefore the needed number of transits is reduced by a factor of 4 in challenging haze and cloud scenarios.
研究系外行星的大气层是了解太阳系以外遥远世界最具前景的方法之一。系外行星大气层的成分可以为其地质情况和潜在宜居性提供关键见解。例如,有人提出某些分子如水蒸气、氧气或甲烷的存在表明存在生命的可能性。从观测角度来看,在过去十五年里,在表征系外行星大气层方面取得了重大进展。这项工作回顾了地基高分辨率光谱仪器的最新发展,这些仪器使得详细分析遥远的大气层成为可能。高分辨率透射光谱是最有效的方法之一,它已经对类木行星的大气层进行了研究,并正在向更小的海王星以下的系外行星推进。使用这种技术已经检测到了许多分子,包括 。我们探讨了未来地基仪器面临的有趣可能性,特别是在检测与地球类似的系外行星大气层中与生物相关的分子(包括分子氧 )的背景下。通过对检测 的详细曝光时间计算,我们发现,在相同的曝光时间下,光谱分辨率为300,000比100,000具有更高的显著性。在具有挑战性的雾霾和云层情况下,曝光时间以及因此所需的凌星次数减少了4倍。