Suppr超能文献

基于机器学习的成骨不全症个体身高预测。

Height prediction of individuals with osteogenesis imperfecta by machine learning.

机构信息

Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China.

Tianjin Medical University, Tianjin, China.

出版信息

Orphanet J Rare Dis. 2024 Nov 9;19(1):420. doi: 10.1186/s13023-024-03433-1.

Abstract

BACKGROUND

Osteogenesis imperfecta (OI) is a genetic disorder characterized by low bone mass, bone fragility and short stature. There is a significant gap in knowledge regarding the growth patterns across different types of OI, and the prediction of height in individuals with OI was not adequately addressed. In this study, we described the growth patterns and predicted the height of individuals with OI employing multiple machine learning (ML) models. Accurate height prediction enables effective monitoring and facilitates the development of personalized intervention plans for managing OI.

METHOD

This study included cross-sectional data for 323 participants with OI, and the median height Z-score for OI types I, III and IV were - 0.62 (-5.93 ~ 3.24), -3.97 (-10.44 ~ -0.02) and - 1.64 (-6.67 ~ 2.44), respectively. Based on the cross-sectional data of participants, the height curves across different gender and OI types were plotted and compared. Subsequently, feature selection techniques, specifically the filter and wrapper methods, were employed to identify predictive factors for the height of participants. Finally, multiple machine learning (ML) models were constructed for height prediction, and the performance of each model was systematically evaluated.

RESULTS

The analysis of height curves revealed that male with OI are significantly taller than female with OI from the age of 14 (p = 0.045), individuals with OI type III are statistically shorter than those with OI types I and IV starting from 3 years old (p = 0.006), and those with OI type IV are statistically shorter than those with OI type I from the age of 10 (p = 0.028). The application of filter and wrapper methods identified gender (p = 0.001), age (p < 0.001), Sillence types (p = 0.007), weight Z-score (p < 0.001) and aBMD Z-score (p = 0.021) as significant predictive factors for height. The optimal performance of predictive models was registered by gradient boosting classifier (GB) (bias = 5.783, accuracy = 92.59%, R = 0.828), random forest (RF) (bias = 6.155, accuracy = 90.12%, R = 0.788), ensemble machine learning (EML) (bias = 6.250, accuracy = 91.36%, R = 0.825) and deep neuron networks (DNNs) (bias = 6.223, accuracy = 90.12%, R = 0.821).

CONCLUSION

This study analyzed a large cohort of individuals with OI and provided detailed height patterns across different gender and OI types that are crucial for assessing overall growth. Gender, age, Sillence types, weight Z-score and aBMD Z-score were identified as predictive factors for height. The predictive models of GB, RF, EML and DNNs had higher accuracy to evaluate the height of individuals with OI. This study allows guardians and physicians to timely monitor the height parameters, and facilitate the creation of personalized intervention schedules tailored to the needs of individuals with OI.

摘要

背景

成骨不全症(OI)是一种遗传性疾病,其特征为骨量低、骨骼脆弱和身材矮小。不同类型的 OI 的生长模式存在显著差异,且 OI 患者的身高预测尚未得到充分解决。本研究描述了 OI 患者的生长模式,并采用多种机器学习(ML)模型预测其身高。准确的身高预测有助于对 OI 进行有效监测,并为制定个性化干预计划提供便利。

方法

本研究纳入了 323 名 OI 患者的横断面数据,OI 类型 I、III 和 IV 的中位数身高 Z 评分分别为-0.62(-5.933.24)、-3.97(-10.44-0.02)和-1.64(-6.67~2.44)。基于参与者的横断面数据,绘制并比较了不同性别和 OI 类型的身高曲线。随后,采用特征选择技术(包括过滤法和包裹法)识别参与者身高的预测因素。最后,构建了多个 ML 模型以进行身高预测,并系统评估了每个模型的性能。

结果

身高曲线分析显示,OI 男性从 14 岁开始明显比 OI 女性高(p=0.045),OI 类型 III 患者从 3 岁开始明显比 OI 类型 I 和 IV 患者矮(p=0.006),OI 类型 IV 患者从 10 岁开始明显比 OI 类型 I 患者矮(p=0.028)。过滤法和包裹法确定了性别(p=0.001)、年龄(p<0.001)、Sillence 类型(p=0.007)、体重 Z 评分(p<0.001)和 aBMD Z 评分(p=0.021)为身高的显著预测因素。梯度提升分类器(GB)(偏差=5.783,准确度=92.59%,R=0.828)、随机森林(RF)(偏差=6.155,准确度=90.12%,R=0.788)、集成机器学习(EML)(偏差=6.250,准确度=91.36%,R=0.825)和深度神经元网络(DNNs)(偏差=6.223,准确度=90.12%,R=0.821)等预测模型的性能最佳。

结论

本研究分析了大量 OI 患者的数据,提供了不同性别和 OI 类型的详细身高模式,这对于评估整体生长情况至关重要。性别、年龄、Sillence 类型、体重 Z 评分和 aBMD Z 评分是身高的预测因素。GB、RF、EML 和 DNNs 等预测模型在评估 OI 患者的身高方面具有更高的准确性。本研究有助于监护人及医生及时监测身高参数,并为 OI 患者制定个性化的干预计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43e7/11549822/792612f80572/13023_2024_3433_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验