Suppr超能文献

工业与汽车网络物理系统中的分布式智能:综述

Distributed intelligence in industrial and automotive cyber-physical systems: a review.

作者信息

Piperigkos Nikos, Gkillas Alexandros, Arvanitis Gerasimos, Nousias Stavros, Lalos Aris, Fournaris Apostolos, Radoglou-Grammatikis Panagiotis, Sarigiannidis Panagiotis, Moustakas Konstantinos

机构信息

Industrial Systems Institute, Athena Research Center, Patras, Greece.

Department of Electrical and Computer Engineering, University of Patras, Patras, Greece.

出版信息

Front Robot AI. 2024 Oct 28;11:1430740. doi: 10.3389/frobt.2024.1430740. eCollection 2024.

Abstract

Cyber-physical systems (CPSs) are evolving from individual systems to collectives of systems that collaborate to achieve highly complex goals, realizing a cyber-physical system of systems (CPSoSs) approach. They are heterogeneous systems comprising various autonomous CPSs, each with unique performance capabilities, priorities, and pursued goals. In practice, there are significant challenges in the applicability and usability of CPSoSs that need to be addressed. The decentralization of CPSoSs assigns tasks to individual CPSs within the system of systems. All CPSs should harmonically pursue system-based achievements and collaborate to make system-of-system-based decisions and implement the CPSoS functionality. The automotive domain is transitioning to the system of systems approach, aiming to provide a series of emergent functionalities like traffic management, collaborative car fleet management, or large-scale automotive adaptation to the physical environment, thus providing significant environmental benefits and achieving significant societal impact. Similarly, large infrastructure domains are evolving into global, highly integrated cyber-physical systems of systems, covering all parts of the value chain. This survey provides a comprehensive review of current best practices in connected cyber-physical systems and investigates a dual-layer architecture entailing perception and behavioral components. The presented perception layer entails object detection, cooperative scene analysis, cooperative localization and path planning, and human-centric perception. The behavioral layer focuses on human-in-the-loop (HITL)-centric decision making and control, where the output of the perception layer assists the human operator in making decisions while monitoring the operator's state. Finally, an extended overview of digital twin (DT) paradigms is provided so as to simulate, realize, and optimize large-scale CPSoS ecosystems.

摘要

网络物理系统(CPS)正在从单个系统演变为相互协作以实现高度复杂目标的系统集合,从而实现了一种系统之系统的网络物理系统(CPSoS)方法。它们是由各种自主CPS组成的异构系统,每个CPS都具有独特的性能能力、优先级和追求的目标。在实践中,CPSoS的适用性和可用性存在重大挑战,需要加以解决。CPSoS的去中心化将任务分配给系统之系统中的各个CPS。所有CPS都应和谐地追求基于系统的成就,并协作做出基于系统之系统的决策并实现CPSoS功能。汽车领域正在向系统之系统方法转变,旨在提供一系列新兴功能,如交通管理、协同车队管理或汽车对物理环境的大规模适应,从而带来显著的环境效益并产生重大的社会影响。同样,大型基础设施领域正在演变成全球高度集成的系统之系统的网络物理系统,涵盖价值链的所有部分。本综述全面回顾了互联网络物理系统的当前最佳实践,并研究了一种包含感知和行为组件的双层架构。所提出的感知层包括目标检测、协同场景分析、协同定位与路径规划以及以人类为中心的感知。行为层专注于以人在回路(HITL)为中心的决策和控制,其中感知层的输出在监测操作员状态的同时协助人类操作员进行决策。最后,提供了数字孪生(DT)范式的扩展概述,以便模拟、实现和优化大规模CPSoS生态系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4510/11551047/a9c2e8ffc16c/frobt-11-1430740-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验