Suppr超能文献

为部分点云配准构建多样内点一致性

Constructing Diverse Inlier Consistency for Partial Point Cloud Registration.

作者信息

Zhang Yu-Xin, Gui Jie, Kwok James Tin-Yau

出版信息

IEEE Trans Image Process. 2024;33:6535-6549. doi: 10.1109/TIP.2024.3492700. Epub 2024 Nov 19.

Abstract

Partial point cloud registration aims to align partial scans into a shared coordinate system. While learning-based partial point cloud registration methods have achieved remarkable progress, they often fail to take full advantage of the relative positional relationships both within (intra-) and between (inter-) point clouds. This oversight hampers their ability to accurately identify overlapping regions and search for reliable correspondences. To address these limitations, a diverse inlier consistency (DIC) method has been proposed that adaptively embeds the positional information of a reliable correspondence in the intra- and inter-point cloud. Firstly, a diverse inlier consistency-driven region perception (DICdRP) module is devised, which encodes the positional information of the selected correspondence within the intra-point cloud. This module enhances the sensitivity of all points to overlapping regions by recognizing the position of the selected correspondence. Secondly, a diverse inlier consistency-aware correspondence search (DICaCS) module is developed, which leverages relative positions in the inter-point cloud. This module studies an inter-point cloud DIC weight to supervise correspondence compatibility, allowing for precise identification of correspondences and effective outlier filtration. Thirdly, diverse information is integrated throughout our framework to achieve a more holistic and detailed registration process. Extensive experiments on object-level and scene-level datasets demonstrate the superior performance of the proposed algorithm. The code is available at https://github.com/yxzhang15/DIC.

摘要

局部点云配准旨在将局部扫描对齐到一个共享坐标系中。虽然基于学习的局部点云配准方法已经取得了显著进展,但它们往往未能充分利用点云内部( intra-)和点云之间( inter-)的相对位置关系。这种疏忽阻碍了它们准确识别重叠区域和寻找可靠对应关系的能力。为了解决这些限制,提出了一种多样内点一致性(DIC)方法,该方法在点云内部和点云之间自适应地嵌入可靠对应关系的位置信息。首先,设计了一个多样内点一致性驱动的区域感知(DICdRP)模块,该模块对点云内部所选对应关系的位置信息进行编码。该模块通过识别所选对应关系的位置来提高所有点对重叠区域的敏感度。其次,开发了一个多样内点一致性感知对应搜索(DICaCS)模块,该模块利用点云之间的相对位置。该模块研究点云间DIC权重以监督对应关系的兼容性,从而实现对应关系的精确识别和有效的离群值过滤。第三,在整个框架中整合多样信息,以实现更全面、详细的配准过程。在物体级和场景级数据集上进行的大量实验证明了所提算法的卓越性能。代码可在https://github.com/yxzhang15/DIC获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验