Suppr超能文献

推进医疗保健的基础模型:挑战、机遇与未来方向。

Foundation Model for Advancing Healthcare: Challenges, Opportunities and Future Directions.

作者信息

He Yuting, Huang Fuxiang, Jiang Xinrui, Nie Yuxiang, Wang Minghao, Wang Jiguang, Chen Hao

出版信息

IEEE Rev Biomed Eng. 2025;18:172-191. doi: 10.1109/RBME.2024.3496744. Epub 2025 Jan 28.

Abstract

Foundation model, trained on a diverse range of data and adaptable to a myriad of tasks, is advancing healthcare. It fosters the development of healthcare artificial intelligence (AI) models tailored to the intricacies of the medical field, bridging the gap between limited AI models and the varied nature of healthcare practices. The advancement of a healthcare foundation model (HFM) brings forth tremendous potential to augment intelligent healthcare services across a broad spectrum of scenarios. However, despite the imminent widespread deployment of HFMs, there is currently a lack of clear understanding regarding their operation in the healthcare field, their existing challenges, and their future trajectory. To answer these critical inquiries, we present a comprehensive and in-depth examination that delves into the landscape of HFMs. It begins with a comprehensive overview of HFMs, encompassing their methods, data, and applications, to provide a quick understanding of the current progress. Subsequently, it delves into a thorough exploration of the challenges associated with data, algorithms, and computing infrastructures in constructing and widely applying foundation models in healthcare. Furthermore, this survey identifies promising directions for future development in this field. We believe that this survey will enhance the community's understanding of the current progress of HFMs and serve as a valuable source of guidance for future advancements in this domain.

摘要

基础模型基于广泛的数据进行训练,能够适应无数任务,正在推动医疗保健领域的发展。它促进了针对医疗领域复杂性量身定制的医疗保健人工智能(AI)模型的开发,弥合了有限的AI模型与医疗保健实践多样性之间的差距。医疗保健基础模型(HFM)的进步为在广泛场景中增强智能医疗保健服务带来了巨大潜力。然而,尽管HFM即将广泛部署,但目前对于它们在医疗保健领域的运作、现存挑战以及未来发展轨迹,人们仍缺乏清晰的认识。为了回答这些关键问题,我们进行了全面而深入的研究,深入探讨HFM的情况。首先对HFM进行全面概述,包括其方法、数据和应用,以便快速了解当前进展。随后,深入探讨在医疗保健领域构建和广泛应用基础模型时与数据、算法和计算基础设施相关的挑战。此外,本调查还确定了该领域未来发展的有前景的方向。我们相信,这项调查将增进社区对HFM当前进展的理解,并为该领域未来的发展提供有价值的指导来源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验