Han Kunyuan, Cheng Yunzhang, Han Qinglin, Chen Jishizhan
School of Health Science and Engineering, University of Shanghai For Science and Technology, 101 Yingkou Rd, Yangpu District, Shanghai, 200093, China.
Otrixell Biotechnology (Suzhou) Co., Ltd., 1st Floor, Building 2, 168 Majian Rd, SND, Suzhou 215129, China.
Int J Biol Macromol. 2024 Dec;282(Pt 6):137253. doi: 10.1016/j.ijbiomac.2024.137253. Epub 2024 Nov 12.
The fabrication of three-dimensional (3D) biostructures through additive manufacturing relies on the critical role of ink development. With the growing demand for high-resolution manufacturing, digital light processing (DLP) technology has emerged as a promising technique requiring specialised photosensitive inks. Although gelatine methacryloyl (GelMA) has been the primary option for DLP, its mechanical properties, biocompatibility, and low stability still present limitations. The development of collagen-based ink is thus in high demand for a wider stiffness adjustment range, native bioactivities, and versatility in biomedical engineering applications. In this paper, we report a rapid and low-cost protocol for collagen methacryloyl (ColMA)/poly(ethylene glycol) diacrylate (PEGDA) ink for DLP printing. The ink demonstrated the highest printing resolution of ∼50 μm by using 405 nm visible light. The printability, mechanical properties and cell viability of the DLP-printed ColMA/PEGDA structures were comprehensively evaluated. The printed ColMA/PEGDA structures reached a compressive modulus over 100 kPa with 0.6 wt% collagen. The printed ColMA/PEGDA scaffolds promoted the attachment and proliferation of 3 T3 fibroblasts, demonstrating their potential in future applications in biomedical engineering.
通过增材制造制备三维(3D)生物结构依赖于墨水开发的关键作用。随着对高分辨率制造需求的不断增长,数字光处理(DLP)技术已成为一种有前景的技术,需要特殊的光敏墨水。尽管甲基丙烯酰化明胶(GelMA)一直是DLP的主要选择,但其机械性能、生物相容性和低稳定性仍然存在局限性。因此,基于胶原蛋白的墨水的开发对于更广泛的硬度调节范围、天然生物活性以及在生物医学工程应用中的多功能性有很高的需求。在本文中,我们报告了一种用于DLP打印的甲基丙烯酰化胶原蛋白(ColMA)/聚乙二醇二丙烯酸酯(PEGDA)墨水的快速低成本制备方案。通过使用405 nm可见光,该墨水展示了约50μm的最高打印分辨率。对DLP打印的ColMA/PEGDA结构的可打印性、机械性能和细胞活力进行了全面评估。含0.6 wt%胶原蛋白的打印ColMA/PEGDA结构的压缩模量超过100 kPa。打印的ColMA/PEGDA支架促进了3T3成纤维细胞的附着和增殖,证明了它们在生物医学工程未来应用中的潜力。