Suppr超能文献

数字光处理(DLP)生物打印技术进展:生物材料及其应用、创新、挑战与未来展望综述

Advances in Digital Light Processing (DLP) Bioprinting: A Review of Biomaterials and Its Applications, Innovations, Challenges, and Future Perspectives.

作者信息

Alparslan Cem, Bayraktar Şenol

机构信息

Faculty of Engineering and Architecture, Mechanical Engineering, Recep Tayyip Erdoğan University, Rize 53100, Türkiye.

出版信息

Polymers (Basel). 2025 May 7;17(9):1287. doi: 10.3390/polym17091287.

Abstract

Digital light processing (DLP) technology stands out as a groundbreaking method in the field of biomedical engineering that enables the production of highly precise structures using photopolymerizable materials. Smart materials such as shape memory polymers, hydrogels, and nanocomposites are used as ideal materials for personalized medicine applications thanks to their properties such as superior mechanical strength, biocompatibility, and sensitivity to environmental stimuli in DLP technology. The integration of these materials with DLP enables the production of functional and complex structures, especially in areas such as bone and soft tissue engineering, drug delivery, and biosensor production. However, limited material diversity, scalability problems in production processes, and technical difficulties in optimizing bioprinting parameters are among the main obstacles in this field. This study systematically examines the role of smart biomaterials in DLP-based bioprinting processes. It addresses the innovative applications of these materials in tissue engineering and regenerative medicine. It also comprehensively evaluates its contributions to biomedical applications and discusses future research areas to overcome current limitations.

摘要

数字光处理(DLP)技术是生物医学工程领域一种开创性的方法,它能够使用可光聚合材料制造出高度精确的结构。形状记忆聚合物、水凝胶和纳米复合材料等智能材料,由于其在数字光处理技术中具有卓越的机械强度、生物相容性以及对环境刺激的敏感性等特性,被用作个性化医疗应用的理想材料。这些材料与数字光处理技术的结合,能够制造出功能性和复杂的结构,尤其是在骨与软组织工程、药物递送以及生物传感器制造等领域。然而,材料多样性有限、生产过程中的可扩展性问题以及优化生物打印参数方面的技术难题,是该领域的主要障碍。本研究系统地考察了智能生物材料在基于数字光处理的生物打印过程中的作用。它阐述了这些材料在组织工程和再生医学中的创新应用。还全面评估了其对生物医学应用的贡献,并讨论了克服当前局限性的未来研究领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d5/12074245/57cfce88b009/polymers-17-01287-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验