文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

应激状态下的言语产生用于机器学习:79 例 8 信号的多模态数据集。

Speech production under stress for machine learning: multimodal dataset of 79 cases and 8 signals.

机构信息

Speech@FIT, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic.

Department of Psychology, Faculty of Arts, Masaryk University, Brno, Czech Republic.

出版信息

Sci Data. 2024 Nov 12;11(1):1221. doi: 10.1038/s41597-024-03991-w.


DOI:10.1038/s41597-024-03991-w
PMID:39532912
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11557825/
Abstract

Early identification of cognitive or physical overload is critical in fields where human decision making matters when preventing threats to safety and property. Pilots, drivers, surgeons, and operators of nuclear plants are among those affected by this challenge, as acute stress can impair their cognition. In this context, the significance of paralinguistic automatic speech processing increases for early stress detection. The intensity, intonation, and cadence of an utterance are examples of paralinguistic traits that determine the meaning of a sentence and are often lost in the verbatim transcript. To address this issue, tools are being developed to recognize paralinguistic traits effectively. However, a data bottleneck still exists in the training of paralinguistic speech traits, and the lack of high-quality reference data for the training of artificial systems persists. Regarding this, we present an original empirical dataset collected using the BESST experimental protocol for capturing speech signals under induced stress. With this data, our aim is to promote the development of pre-emptive intervention systems based on stress estimation from speech.

摘要

早期识别认知或身体超负荷在人类决策对安全和财产构成威胁的领域至关重要。飞行员、驾驶员、外科医生和核电厂操作人员都受到这一挑战的影响,因为急性应激会损害他们的认知能力。在这种情况下,副语言自动语音处理对于早期压力检测的重要性增加。言语的强度、语调和谐振是决定句子意义的副语言特征的示例,而这些特征在逐字记录中经常丢失。为了解决这个问题,人们正在开发工具来有效识别副语言特征。然而,在训练副语言语音特征方面仍然存在数据瓶颈,并且缺乏用于训练人工智能系统的高质量参考数据。关于这一点,我们提出了一个原始的经验数据集,该数据集是使用 BESST 实验协议收集的,用于在诱导压力下捕获语音信号。有了这个数据,我们的目标是促进基于语音压力估计的先发干预系统的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb46/11557825/e9fcabd54390/41597_2024_3991_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb46/11557825/dabeea2bfbd8/41597_2024_3991_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb46/11557825/dd53ef354f98/41597_2024_3991_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb46/11557825/25c5c55bcbc8/41597_2024_3991_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb46/11557825/3420e27b71df/41597_2024_3991_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb46/11557825/60dc6b8cf3b5/41597_2024_3991_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb46/11557825/e4c876d190de/41597_2024_3991_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb46/11557825/e9fcabd54390/41597_2024_3991_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb46/11557825/dabeea2bfbd8/41597_2024_3991_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb46/11557825/dd53ef354f98/41597_2024_3991_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb46/11557825/25c5c55bcbc8/41597_2024_3991_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb46/11557825/3420e27b71df/41597_2024_3991_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb46/11557825/60dc6b8cf3b5/41597_2024_3991_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb46/11557825/e4c876d190de/41597_2024_3991_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb46/11557825/e9fcabd54390/41597_2024_3991_Fig7_HTML.jpg

相似文献

[1]
Speech production under stress for machine learning: multimodal dataset of 79 cases and 8 signals.

Sci Data. 2024-11-12

[2]
Unveiling the sound of the cognitive status: Machine Learning-based speech analysis in the Alzheimer's disease spectrum.

Alzheimers Res Ther. 2024-2-2

[3]
Using Hybrid HMM/DNN Embedding Extractor Models in Computational Paralinguistic Tasks.

Sensors (Basel). 2023-5-30

[4]
Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.

J Biomed Inform. 2023-12

[5]
Validation of Machine Learning-Based Assessment of Major Depressive Disorder from Paralinguistic Speech Characteristics in Routine Care.

Depress Anxiety. 2024-4-9

[6]
Utterance Level Feature Aggregation with Deep Metric Learning for Speech Emotion Recognition.

Sensors (Basel). 2021-6-20

[7]
Voice Synthesis Improvement by Machine Learning of Natural Prosody.

Sensors (Basel). 2024-3-1

[8]
An Investigation of Speech Features, Plant System Alarms, and Operator-System Interaction for the Classification of Operator Cognitive Workload During Dynamic Work.

Hum Factors. 2021-8

[9]
Using Wearable Devices and Speech Data for Personalized Machine Learning in Early Detection of Mental Disorders: Protocol for a Participatory Research Study.

JMIR Res Protoc. 2023-11-13

[10]
Machine Learning Methods for Automatic Silent Speech Recognition Using a Wearable Graphene Strain Gauge Sensor.

Sensors (Basel). 2021-12-31

引用本文的文献

[1]
Machine-learning detection of stress severity expressed on a continuous scale using acoustic, verbal, visual, and physiological data: lessons learned.

Front Psychiatry. 2025-6-13

本文引用的文献

[1]
SignalPlant: an open signal processing software platform.

Physiol Meas. 2016-7

[2]
Introducing the Maastricht Acute Stress Test (MAST): a quick and non-invasive approach to elicit robust autonomic and glucocorticoid stress responses.

Psychoneuroendocrinology. 2012-5-18

[3]
A global measure of perceived stress.

J Health Soc Behav. 1983-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索