Suppr超能文献

揭示认知状态的声音:基于机器学习的阿尔茨海默病谱系中的言语分析。

Unveiling the sound of the cognitive status: Machine Learning-based speech analysis in the Alzheimer's disease spectrum.

机构信息

Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain.

Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.

出版信息

Alzheimers Res Ther. 2024 Feb 2;16(1):26. doi: 10.1186/s13195-024-01394-y.

Abstract

BACKGROUND

Advancement in screening tools accessible to the general population for the early detection of Alzheimer's disease (AD) and prediction of its progression is essential for achieving timely therapeutic interventions and conducting decentralized clinical trials. This study delves into the application of Machine Learning (ML) techniques by leveraging paralinguistic features extracted directly from a brief spontaneous speech (SS) protocol. We aimed to explore the capability of ML techniques to discriminate between different degrees of cognitive impairment based on SS. Furthermore, for the first time, this study investigates the relationship between paralinguistic features from SS and cognitive function within the AD spectrum.

METHODS

Physical-acoustic features were extracted from voice recordings of patients evaluated in a memory unit who underwent a SS protocol. We implemented several ML models evaluated via cross-validation to identify individuals without cognitive impairment (subjective cognitive decline, SCD), with mild cognitive impairment (MCI), and with dementia due to AD (ADD). In addition, we established models capable of predicting cognitive domain performance based on a comprehensive neuropsychological battery from Fundació Ace (NBACE) using SS-derived information.

RESULTS

The results of this study showed that, based on a paralinguistic analysis of sound, it is possible to identify individuals with ADD (F1 = 0.92) and MCI (F1 = 0.84). Furthermore, our models, based on physical acoustic information, exhibited correlations greater than 0.5 for predicting the cognitive domains of attention, memory, executive functions, language, and visuospatial ability.

CONCLUSIONS

In this study, we show the potential of a brief and cost-effective SS protocol in distinguishing between different degrees of cognitive impairment and forecasting performance in cognitive domains commonly affected within the AD spectrum. Our results demonstrate a high correspondence with protocols traditionally used to assess cognitive function. Overall, it opens up novel prospects for developing screening tools and remote disease monitoring.

摘要

背景

为了实现及时的治疗干预和开展分散的临床试验,提高针对阿尔茨海默病(AD)早期检测和预测其进展的大众可及的筛查工具至关重要。本研究探讨了通过利用直接从简短自发语音(SS)协议中提取的副语言特征来应用机器学习(ML)技术。我们旨在探索 ML 技术根据 SS 区分不同程度认知障碍的能力。此外,本研究首次调查了 SS 中的副语言特征与 AD 谱内认知功能之间的关系。

方法

从在记忆单元接受 SS 协议评估的患者的语音记录中提取物理声学特征。我们实施了几个经过交叉验证评估的 ML 模型,以识别没有认知障碍(主观认知下降,SCD)、有轻度认知障碍(MCI)和因 AD 导致的痴呆(ADD)的个体。此外,我们还建立了能够基于 Fundació Ace(NBACE)的综合神经心理学测试(SS 衍生信息)预测认知域表现的模型。

结果

本研究结果表明,基于声音的副语言分析,可以识别出 ADD(F1 = 0.92)和 MCI(F1 = 0.84)患者。此外,我们基于物理声学信息的模型对预测注意力、记忆、执行功能、语言和视空间能力等认知域的表现具有大于 0.5 的相关性。

结论

在这项研究中,我们展示了简短且具有成本效益的 SS 协议在区分不同程度认知障碍和预测 AD 谱内常见认知域表现方面的潜力。我们的结果与传统用于评估认知功能的协议高度一致。总体而言,它为开发筛查工具和远程疾病监测开辟了新的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b537/10835990/5fa970d406f1/13195_2024_1394_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验