Suppr超能文献

canSAR 2024——公共药物发现知识库的更新版。

canSAR 2024-an update to the public drug discovery knowledgebase.

作者信息

Gingrich Phillip W, Chitsazi Rezvan, Biswas Ansuman, Jiang Chunjie, Zhao Li, Tym Joseph E, Brammer Kevin M, Li Jun, Shu Zhigang, Maxwell David S, Tacy Jeffrey A, Mica Ioan L, Darkoh Michael, di Micco Patrizio, Russell Kaitlyn P, Workman Paul, Al-Lazikani Bissan

机构信息

Department of Genomic Medicine; Therapeutics Discovery Division; and The Institute for Data Science in Oncology; University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

Enterprise Development and Integration, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Nucleic Acids Res. 2025 Jan 6;53(D1):D1287-D1294. doi: 10.1093/nar/gkae1050.

Abstract

canSAR (https://cansar.ai) continues to serve as the largest publicly available platform for cancer-focused drug discovery and translational research. It integrates multidisciplinary data from disparate and otherwise siloed public data sources as well as data curated uniquely for canSAR. In addition, canSAR deploys a suite of curation and standardization tools together with AI algorithms to generate new knowledge from these integrated data to inform hypothesis generation. Here we report the latest updates to canSAR. As well as increasing available data, we provide enhancements to our algorithms to improve the offering to the user. Notably, our enhancements include a revised ligandability classifier leveraging Positive Unlabeled Learning that finds twice as many ligandable opportunities across the pocketome, and our revised chemical standardization pipeline and hierarchy better enables the aggregation of structurally related molecular records.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b51/11701553/49355a722936/gkae1050figgra1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验