Suppr超能文献

开发并验证一个全面的多基因风险评分以增强圆锥角膜风险预测。

Developing and validating a comprehensive polygenic risk score to enhance keratoconus risk prediction.

作者信息

He Weixiong, Võsa Urmo, Palumaa Teele, Ong Jue-Sheng, Torres Santiago Diaz, Hewitt Alex W, Mackey David A, Gharahkhani Puya, Esko Tõnu, MacGregor Stuart

机构信息

QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia.

Faculty of Medicine, The University of Queensland, Brisbane, St Lucia, Queensland 4072, Australia.

出版信息

Hum Mol Genet. 2025 Jan 29;34(2):140-147. doi: 10.1093/hmg/ddae157.

Abstract

PURPOSE

This study aimed to develop and validate a comprehensive polygenic risk score (PRS) for keratoconus, enhancing the predictive accuracy for identifying individuals at increased risk, which is crucial for preventing keratoconus-associated visual impairment such as post-Laser-assisted in situ keratomileusis (LASIK) ectasia.

METHODS

We applied a multi-trait analysis approach (MTAG) to genome-wide association study data on keratoconus and quantitative keratoconus-related traits and used this to construct PRS models for keratoconus risk using several PRS methodologies. We evaluated the predictive performance of the PRSs in two biobanks: Estonian Biobank (EstBB; 375 keratoconus cases and 17 902 controls) and UK Biobank (UKB: 34 keratoconus cases and 1000 controls). Scores were compared using the area under the curve (AUC) and odds ratios (ORs) for various PRS models.

RESULTS

The PRS models demonstrated significant predictive capabilities in EstBB, with the SBayesRC model achieving the highest OR of 2.28 per standard deviation increase in PRS, with a model containing age, sex and PRS showing good predictive accuracy (AUC = 0.72). In UKB, we found that adding the best-performing PRS to a model containing corneal measurements increased the AUC from 0.84 to 0.88 (P = 0.012 for difference), with an OR of 4.26 per standard deviation increase in the PRS. These models showed improved predictive capability compared to previous keratoconus PRS.

CONCLUSION

The PRS models enhanced prediction of keratoconus risk, even with corneal measurements, showing potential for clinical use to identify individuals at high risk of keratoconus, and potentially help reduce the risk of post-LASIK ectasia.

摘要

目的

本研究旨在开发并验证一种用于圆锥角膜的综合多基因风险评分(PRS),提高识别风险增加个体的预测准确性,这对于预防圆锥角膜相关的视力损害(如准分子激光原位角膜磨镶术[LASIK]术后角膜扩张)至关重要。

方法

我们将多性状分析方法(MTAG)应用于圆锥角膜及圆锥角膜相关定量性状的全基因组关联研究数据,并使用几种PRS方法以此构建圆锥角膜风险的PRS模型。我们在两个生物样本库中评估了PRS的预测性能:爱沙尼亚生物样本库(EstBB;375例圆锥角膜病例和17902例对照)和英国生物样本库(UKB:34例圆锥角膜病例和1000例对照)。使用曲线下面积(AUC)和各种PRS模型的优势比(OR)对评分进行比较。

结果

PRS模型在EstBB中显示出显著的预测能力,SBayesRC模型在PRS每增加一个标准差时达到最高OR值2.28,一个包含年龄、性别和PRS的模型显示出良好的预测准确性(AUC = 0.72)。在UKB中,我们发现将表现最佳的PRS添加到包含角膜测量值的模型中,AUC从0.84增加到0.88(差异P = 0.012),PRS每增加一个标准差时OR为4.26。与先前的圆锥角膜PRS相比,这些模型显示出更高的预测能力。

结论

PRS模型增强了对圆锥角膜风险的预测,即使结合角膜测量值也是如此,显示出在临床上用于识别圆锥角膜高风险个体的潜力,并有可能帮助降低LASIK术后角膜扩张的风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验