Suppr超能文献

配体距离作为NMDA受体致病性和功能的关键预测指标。

Ligand distances as key predictors of pathogenicity and function in NMDA receptors.

作者信息

Montanucci Ludovica, Brünger Tobias, Bhattarai Nisha, Boßelmann Christian M, Kim Sukhan, Allen James P, Zhang Jing, Klöckner Chiara, Krey Ilona, Fariselli Piero, May Patrick, Lemke Johannes R, Myers Scott J, Yuan Hongjie, Traynelis Stephen F, Lal Dennis

机构信息

Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 1133 John Freeman Blvd, Houston, TX 77030, United States.

Cologne Center for Genomics, University of Cologne, University Hospital Cologne, Weyertal 115b, Cologne 50937, Germany.

出版信息

Hum Mol Genet. 2025 Jan 29;34(2):128-139. doi: 10.1093/hmg/ddae156.

Abstract

Genetic variants in the genes GRIN1, GRIN2A, GRIN2B, and GRIN2D, which encode subunits of the N-methyl-D-aspartate receptor (NMDAR), have been associated with severe and heterogeneous neurologic and neurodevelopmental disorders, including early onset epilepsy, developmental and epileptic encephalopathy, intellectual disability, and autism spectrum disorders. Missense variants in these genes can result in gain or loss of the NMDAR function, requiring opposite therapeutic treatments. Computational methods that predict pathogenicity and molecular functional effects of missense variants are therefore crucial for therapeutic applications. We assembled 223 missense variants from patients, 631 control variants from the general population, and 160 missense variants characterized by electrophysiological readouts that show whether they can enhance or reduce the function of the receptor. This includes new functional data from 33 variants reported here, for the first time. By mapping these variants onto the NMDAR protein structures, we found that pathogenic/benign variants and variants that increase/decrease the channel function were distributed unevenly on the protein structure, with spatial proximity to ligands bound to the agonist and antagonist binding sites being a key predictive feature for both variant pathogenicity and molecular functional consequences. Leveraging distances from ligands, we developed two machine-learning based predictors for NMDA variants: a pathogenicity predictor which outperforms currently available predictors and the first molecular function (increase/decrease) predictor. Our findings can have direct application to patient care by improving diagnostic yield for genetic neurodevelopmental disorders and by guiding personalized treatment informed by the knowledge of the molecular disease mechanism.

摘要

编码N-甲基-D-天冬氨酸受体(NMDAR)亚基的GRIN1、GRIN2A、GRIN2B和GRIN2D基因中的遗传变异,与严重且异质性的神经和神经发育障碍相关,包括早发性癫痫、发育性和癫痫性脑病、智力残疾以及自闭症谱系障碍。这些基因中的错义变异可导致NMDAR功能的获得或丧失,需要相反的治疗方法。因此,预测错义变异的致病性和分子功能效应的计算方法对于治疗应用至关重要。我们收集了来自患者的223个错义变异、来自普通人群的631个对照变异,以及160个通过电生理读数表征的错义变异,这些读数显示了它们是否能增强或降低受体功能。这包括首次在此报道的33个变异的新功能数据。通过将这些变异映射到NMDAR蛋白质结构上,我们发现致病性/良性变异以及增加/降低通道功能的变异在蛋白质结构上分布不均,与结合到激动剂和拮抗剂结合位点的配体在空间上接近是变异致病性和分子功能后果的关键预测特征。利用与配体的距离,我们开发了两种基于机器学习的NMDAR变异预测器:一种致病性预测器,其性能优于目前可用的预测器,以及第一种分子功能(增加/降低)预测器。我们的研究结果可通过提高遗传性神经发育障碍的诊断率,并通过基于分子疾病机制知识指导个性化治疗,直接应用于患者护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e10/11780861/bfb08030fefa/ddae156ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验