UMR CNRS 6015 -INSERM 1083, Laboratoire MITOVASC, Université d'Angers, Angers, France.
PLoS Comput Biol. 2024 Nov 13;20(11):e1012559. doi: 10.1371/journal.pcbi.1012559. eCollection 2024 Nov.
Environmental factors, including mechanical stress and surrounding lipids, can influence the response of GPCRs, such as the mechanosensitive angiotensin II type 1 receptor (AT1). To investigate the impact of these factors on AT1 activation, we developed a steered molecular dynamics simulations protocol based on quaternion formalism. In this protocol, a pulling force was applied to the N-terminus of transmembrane helix 6 (TM6) to induce the TM6 opening characteristic of activation. Subsequently, the simulations were continued without constraints to allow the receptor to relax around the novel TM6 conformation under different conditions. We analyzed the responses of AT1 to membrane stretching, modeled by applying surface tension, in different bilayers. In phosphocholine bilayers without surface tension, we could observe a transient atypical structure of AT1, with an outward TM7 conformation, at the beginning of the activation process. This atypical structure then evolved toward a pre-active structure with outward TM6 and inward TM7. Strikingly, the presence of anionic phosphoglycerol lipids and application of surface tension synergistically favored the atypical structure, which led to an increase in the cross-section area of the receptor intracellular domain. Lipid internalization and H-bonds between lipid heads and the receptor C-terminus increased in phosphoglycerol vs phosphocholine bilayers, but did not depend on surface tension. The difference in the cross-section area of the atypical and pre-active conformations makes the conformational transition sensitive to lateral pressure, and favors the atypical conformation upon surface tension. Anionic lipids act as allosteric modulators of the conformational transition, by stabilizing the atypical conformation. These findings contribute to decipher the mechanisms underlying AT1 activation, highlighting the influence of environmental factors on GPCR responses. Moreover, our results reveal the existence of intermediary conformations that depend on receptor environment and could be targeted in drug design efforts.
环境因素,包括机械应力和周围的脂质,会影响 GPCR 的响应,例如机械敏感的血管紧张素 II 型 1 型受体 (AT1)。为了研究这些因素对 AT1 激活的影响,我们基于四元数形式主义开发了一种导向分子动力学模拟方案。在该方案中,向跨膜螺旋 6 (TM6) 的 N 端施加拉力,以诱导 TM6 打开激活的特征。随后,在没有约束的情况下继续模拟,以使受体在不同条件下围绕新的 TM6 构象松弛。我们分析了 AT1 对膜拉伸的响应,膜拉伸由表面张力建模,在不同的双层膜中进行。在没有表面张力的磷酰胆碱双层中,我们可以观察到 AT1 的瞬态非典型结构,在激活过程开始时,TM7 向外构象。然后,这种非典型结构演化成具有向外 TM6 和向内 TM7 的前激活结构。引人注目的是,带负电荷的磷酸甘油脂质的存在和表面张力的应用协同促进了非典型结构的形成,这导致了受体细胞内结构域的横截面积增加。与磷酰胆碱双层相比,磷酸甘油双层中脂质内化和脂质头部与受体 C 端之间的 H 键增加,但不依赖于表面张力。非典型和前激活构象的横截面积差异使得构象转变对侧向压力敏感,并在表面张力下有利于非典型构象。阴离子脂质作为构象转变的变构调节剂,通过稳定非典型构象起作用。这些发现有助于破译 AT1 激活的机制,强调了环境因素对 GPCR 响应的影响。此外,我们的结果揭示了存在依赖于受体环境的中间构象,并且可以在药物设计努力中作为靶点。