Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22093, United States of America.
Bioinspir Biomim. 2024 Nov 27;20(1). doi: 10.1088/1748-3190/ad920b.
This paper presents a numerical investigation into the aerodynamic characteristics and fluid dynamics of a flying snake-like model employing vertical bending locomotion during aerial undulation in steady gliding. In addition to its typical horizontal undulation, the modeled kinematics incorporates vertical undulations and dorsal-to-ventral bending movements while in motion. Using a computational approach with an incompressible flow solver based on the immersed-boundary method, this study employs topological local mesh refinement mesh blocks to ensure the high resolution of the grid around the moving body. Initially, we applied a vertical wave undulation to a snake model undulating horizontally, investigating the effects of vertical wave amplitudes (ψm). The vortex dynamics analysis unveiled alterations in leading-edge vortices formation within the midplane due to changes in the effective angle of attack resulting from vertical bending, directly influencing lift generation. Our findings highlighted peak lift production atψm=2.5∘and the highest lift-to-drag ratio (L/D) atψm=5∘, with aerodynamic performance declining beyond this threshold. Subsequently, we studied the effects of the dorsal-ventral bending amplitude (ψDV), showing that the tail-up/down body posture can result in different fore-aft body interactions. Compared to the baseline configuration, the lift generation is observed to increase by 17.3% atψDV= 5°, while a preferable L/D is found atψDV= -5°. This study explains the flow dynamics associated with vertical bending and uncovers fundamental mechanisms governing body-body interaction, contributing to the enhancement of lift production and efficiency of aerial undulation in snake-inspired gliding.
本文对采用垂直弯曲运动的蛇形模型在空中蜿蜒摆动时的空气动力特性和流动力学进行了数值研究。除了典型的水平蜿蜒运动外,所建模的运动学还包含了垂直蜿蜒运动和背腹弯曲运动。本研究采用不可压缩流求解器的计算方法,基于浸入边界法,使用拓扑局部网格细化网格块来确保移动体周围网格的高分辨率。首先,我们对水平蜿蜒运动的蛇模型施加垂直波蜿蜒运动,研究了垂直波幅度 (ψm) 的影响。涡动力学分析揭示了由于垂直弯曲导致有效攻角的变化,从而改变了中平面上前缘涡的形成,直接影响升力的产生。我们的研究结果表明,在 ψm=2.5∘时产生最大升力,在 ψm=5∘时产生最高的升阻比 (L/D),超过该阈值时气动性能会下降。随后,我们研究了背腹弯曲幅度 (ψDV) 的影响,表明尾向上/下的身体姿势会导致不同的前后身体相互作用。与基线配置相比,在 ψDV= 5°时,升力生成增加了 17.3%,而在 ψDV= -5°时,发现了更好的 L/D。本研究解释了与垂直弯曲相关的流动动力学,并揭示了控制身体-身体相互作用的基本机制,有助于提高升力产生和蛇形启发滑翔中的空中蜿蜒运动效率。