Suppr超能文献

FedART:一种融合联邦学习与自适应共振理论的神经模型。

FedART: A neural model integrating federated learning and adaptive resonance theory.

作者信息

Pateria Shubham, Subagdja Budhitama, Tan Ah-Hwee

机构信息

School of Computing and Information Systems, Singapore Management University, Singapore.

School of Computing and Information Systems, Singapore Management University, Singapore.

出版信息

Neural Netw. 2025 Jan;181:106845. doi: 10.1016/j.neunet.2024.106845. Epub 2024 Nov 4.

Abstract

Federated Learning (FL) has emerged as a promising paradigm for collaborative model training across distributed clients while preserving data privacy. However, prevailing FL approaches aggregate the clients' local models into a global model through multi-round iterative parameter averaging. This leads to the undesirable bias of the aggregated model towards certain clients in the presence of heterogeneous data distributions among the clients. Moreover, such approaches are restricted to supervised classification tasks and do not support unsupervised clustering. To address these limitations, we propose a novel one-shot FL approach called Federated Adaptive Resonance Theory (FedART) which leverages self-organizing Adaptive Resonance Theory (ART) models to learn category codes, where each code represents a cluster of similar data samples. In FedART, the clients learn to associate their private data with various local category codes. Under heterogeneity, the local codes across different clients represent heterogeneous data. In turn, a global model takes these local codes as inputs and aggregates them into global category codes, wherein heterogeneous client data is indirectly represented by distinctly encoded global codes, in contrast to the averaging out of parameters in the existing approaches. This enables the learned global model to handle heterogeneous data. In addition, FedART employs a universal learning mechanism to support both federated classification and clustering tasks. Our experiments conducted on various federated classification and clustering tasks show that FedART consistently outperforms state-of-the-art FL methods on data with heterogeneous distribution across clients.

摘要

联邦学习(FL)已成为一种很有前景的范式,可用于在保护数据隐私的同时跨分布式客户端进行协作模型训练。然而,现有的联邦学习方法通过多轮迭代参数平均将客户端的本地模型聚合为全局模型。在客户端之间存在异构数据分布的情况下,这会导致聚合模型对某些客户端产生不良偏差。此外,此类方法仅限于监督分类任务,不支持无监督聚类。为了解决这些局限性,我们提出了一种新颖的一次性联邦学习方法,称为联邦自适应共振理论(FedART),它利用自组织自适应共振理论(ART)模型来学习类别代码,其中每个代码代表一组相似的数据样本。在FedART中,客户端学习将其私有数据与各种本地类别代码相关联。在异构性情况下,不同客户端的本地代码代表异构数据。反过来,全局模型将这些本地代码作为输入并将它们聚合为全局类别代码,与现有方法中参数的平均化不同,异构客户端数据由经过不同编码的全局代码间接表示。这使得学习到的全局模型能够处理异构数据。此外,FedART采用通用学习机制来支持联邦分类和聚类任务。我们在各种联邦分类和聚类任务上进行的实验表明,在客户端之间具有异构分布的数据上,FedART始终优于当前最先进的联邦学习方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验