Guo Shuhui, Du Juhua, Li Donghan, Xiong Jinghui, Chen Ye
Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; College of Biological Science, China Agricultural University, Beijing, 100193, China.
Metab Eng. 2025 Jan;87:21-36. doi: 10.1016/j.ymben.2024.11.004. Epub 2024 Nov 12.
Inducible transcription systems are essential tools in genetic engineering, where tight control, strong inducibility and fast response with cost-effective inducers are highly desired. However, existing systems in yeasts are rarely used in large-scale fermentations due to either cost-prohibitive inducers or incompatible performance. Here, we developed powerful xylose and arabinose induction systems in Saccharomyces cerevisiae, utilizing eukaryotic activators XlnR and AraR from Aspergillus species and bacterial repressors XylR and AraR. By integrating these signals into a highly-structured synthetic promoter, we created dual-mode systems with strong outputs and minimal leakiness. These systems demonstrated over 4000- and 300-fold regulation with strong activation and rapid response. The dual-mode xylose system was fully activated by xylose-rich agricultural residues like corncob hydrolysate, outperforming existing systems in terms of leakiness, inducibility, dynamic range, induction rate, and growth impact on host. We validated their utility in metabolic engineering with high-titer linalool production and demonstrated the transferability of the XlnR-based xylose induction system to Pichia pastoris, Candida glabrata and Candida albicans. This work provides robust genetic switches for yeasts and a general strategy for integrating activation-repression signals into synthetic promoters to achieve optimal performance.
诱导型转录系统是基因工程中的重要工具,在基因工程中,人们非常希望实现严格控制、强诱导性以及对经济高效的诱导剂做出快速响应。然而,由于诱导剂成本过高或性能不兼容,酵母中的现有系统很少用于大规模发酵。在此,我们利用来自曲霉属的真核激活因子XlnR和AraR以及细菌阻遏因子XylR和AraR,在酿酒酵母中开发了强大的木糖和阿拉伯糖诱导系统。通过将这些信号整合到高度结构化的合成启动子中,我们创建了具有强输出和最小泄漏的双模式系统。这些系统表现出超过4000倍和300倍的调控能力,具有强激活和快速响应。双模式木糖系统被富含木糖的农业残余物如玉米芯水解物完全激活,在泄漏性、诱导性、动态范围、诱导速率以及对宿主生长的影响方面优于现有系统。我们通过高产芳樟醇的生产验证了它们在代谢工程中的实用性,并证明了基于XlnR的木糖诱导系统可转移至巴斯德毕赤酵母、光滑念珠菌和白色念珠菌。这项工作为酵母提供了强大的基因开关,并为将激活-抑制信号整合到合成启动子中以实现最佳性能提供了一种通用策略。