Suppr超能文献

用于膜加工和可切换气体分离的相转变金属有机多面体

Phase-transformable metal-organic polyhedra for membrane processing and switchable gas separation.

作者信息

Han Po-Chun, Chuang Chia-Hui, Lin Shang-Wei, Xiang Xiangmei, Wang Zaoming, Kuzumoto Mako, Tokuda Shun, Tateishi Tomoki, Legrand Alexandre, Tsang Min Ying, Yang Hsiao-Ching, Wu Kevin C-W, Urayama Kenji, Kang Dun-Yen, Furukawa Shuhei

机构信息

Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, Japan.

Ph. D. Program of Green Materials and Precision Devices, College of Engineering, National Taiwan University, Taipei, Taiwan.

出版信息

Nat Commun. 2024 Nov 13;15(1):9523. doi: 10.1038/s41467-024-53560-3.

Abstract

The capability of materials to interconvert between different phases provides more possibilities for controlling materials' properties without additional chemical modification. The study of state-changing microporous materials just emerged and mainly involves the liquefication or amorphization of solid adsorbents into liquid or glass phases by adding non-porous components or sacrificing their porosity. The material featuring reversible phases with maintained porosity is, however, still challenging. Here, we synthesize metal-organic polyhedra (MOPs) that interconvert between the liquid-glass-crystal phases. The modular synthetic approach is applied to integrate the core MOP cavity that provides permanent microporosity with tethered polymers that dictate the phase transition. We showcase the processability of this material by fabricating a gas separation membrane featuring tunable permeability and selectivity by switching the state. Compared to most conventional porous membranes, the liquid MOP membrane particularly shows the selectivity for CO over H with enhanced permeability.

摘要

材料在不同相之间相互转换的能力为在不进行额外化学修饰的情况下控制材料性能提供了更多可能性。状态变化微孔材料的研究刚刚兴起,主要涉及通过添加无孔成分或牺牲其孔隙率将固体吸附剂液化或非晶化为液相或玻璃相。然而,具有可逆相且孔隙率保持不变的材料仍然具有挑战性。在此,我们合成了在液-玻璃-晶相之间相互转换的金属有机多面体(MOPs)。采用模块化合成方法,将提供永久微孔性的核心MOP腔与决定相变的连接聚合物整合在一起。我们通过制造一种气体分离膜展示了这种材料的可加工性,该膜通过切换状态具有可调的渗透率和选择性。与大多数传统多孔膜相比,液态MOP膜尤其表现出对CO比对H更高的选择性,且渗透率有所提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e6/11560977/4034a12152b9/41467_2024_53560_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验