Suppr超能文献

应用混合区间值费马模糊CRITIC-ARAS模型评估人工智能在食品供应链金融中的采用障碍。

Assessing the adoption barriers for the AI in food supply chain finance applying a hybrid interval-valued Fermatean fuzzy CRITIC-ARAS model.

作者信息

Wang Wenyi, Cao Yushuo, Chen Yu, Liu Chen, Han Xiao, Zhou Bo, Wang Weizhong

机构信息

School of Management and Engineering, Nanjing University, Nanjing, 210093, China.

School of Economics and Management, Anhui Normal University, Wuhu, 241000, China.

出版信息

Sci Rep. 2024 Nov 13;14(1):27834. doi: 10.1038/s41598-024-79177-6.

Abstract

The identification and evaluation of barriers to artificial intelligence (AI) adoption in food supply chain finance (FSCF) can be addressed as a multiattribute decision-making problem. However, only a few studies have reported the application of decision models for evaluating barriers to the implementation of AI in FSCF, especially within an uncertain context. Hence, this work explores the evaluation issue of implementation barriers via an integrated decision model. In this model, the conventional additive ratio assessment (ARAS) model integrated with the Choquet integral and criteria importance through intercriteria correlation (CRITIC) is extended into the interval-valued Fermatean fuzzy (IVFF) setting for ranking the barriers. The IVFF weighted average operator based on the Choquet integral is introduced to form a group decision matrix. Then, the developed ARAS model with the IVFF-CRITIC method is proposed to evaluate the implementation barriers for AI in FSCF, which can depict the interactions between the barriers. Finally, a case of an FSCF, including four participants, is presented to illustrate the application of the reported model and demonstrate its reliability. The result shows that "Data privacy" ([Formula: see text]) is the main barrier impeding AI adoption in FSCF, and the participant "small and medium-sized processing enterprises" ([Formula: see text]) has the highest barrier level to AI adoption.

摘要

人工智能(AI)在食品供应链金融(FSCF)中的采用障碍识别与评估可作为一个多属性决策问题来处理。然而,只有少数研究报告了用于评估FSCF中AI实施障碍的决策模型的应用,特别是在不确定的背景下。因此,这项工作通过一个综合决策模型来探讨实施障碍的评估问题。在这个模型中,将与Choquet积分和基于准则间相关性(CRITIC)的准则重要性相结合的传统加法比率评估(ARAS)模型扩展到区间值费马模糊(IVFF)环境中,以对障碍进行排序。引入基于Choquet积分的IVFF加权平均算子来形成群体决策矩阵。然后,提出了具有IVFF - CRITIC方法的改进ARAS模型,以评估FSCF中AI的实施障碍,该模型可以描述障碍之间的相互作用。最后,给出了一个包含四个参与者的FSCF案例,以说明所报告模型的应用并证明其可靠性。结果表明,“数据隐私”([公式:见原文])是阻碍FSCF采用AI的主要障碍,参与者“中小型加工企业”([公式:见原文])对AI采用的障碍水平最高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b679/11561188/94236948c7ce/41598_2024_79177_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验