Perçin Selçuk
Department of Business Administration, Karadeniz Technical University, 61080, Trabzon, Turkey.
Environ Sci Pollut Res Int. 2023 Apr;30(18):52304-52320. doi: 10.1007/s11356-023-26091-5. Epub 2023 Feb 24.
Big data analytics (BDA), along with the resource efficiency and sustainability perspectives of a circular economy, supports the transition to circular agri-food supply chains (AFSCs), contributing to a country's achievement of the United Nations' Sustainable Development Goals. However, there is still limited research demonstrating the importance and awareness of BDA implementation in circular AFSCs in developing countries. As a result of the barriers to BDA adoption in these regions, circular AFSCs in developing countries are still in their infancies. This study sought to identify the barriers to BDA adoption in circular AFSCs in Turkey using a Delphi-based Pythagorean fuzzy analytic hierarchy process. The proposed method removes the potential for bias and produces consensus among managers of companies in various AFSCs in Turkey. The findings of this study show that the most impactful barriers to BDA are technical, economic and social, followed by environmental and organisational. The most crucial sub-barriers to BDA adoption are "lack of trust, privacy and security", "lack of financial resources" and "lack of skilled human resources". This research can guide industry managers and policymakers in the development of strategies for overcoming barriers to BDA adoption in circular AFSCs in developing nations.
大数据分析(BDA)与循环经济的资源效率和可持续性观点一道,支持向循环农业食品供应链(AFSC)的转型,有助于一国实现联合国可持续发展目标。然而,仍有有限的研究表明发展中国家在循环农业食品供应链中实施大数据分析的重要性和认知度。由于这些地区采用大数据分析存在障碍,发展中国家的循环农业食品供应链仍处于起步阶段。本研究旨在运用基于德尔菲法的毕达哥拉斯模糊层次分析法,确定土耳其循环农业食品供应链采用大数据分析的障碍。所提出的方法消除了偏差的可能性,并在土耳其各类农业食品供应链公司的管理者之间达成了共识。本研究结果表明,大数据分析最具影响力的障碍是技术、经济和社会方面的,其次是环境和组织方面的。采用大数据分析最关键的子障碍是“缺乏信任、隐私和安全”、“缺乏财政资源”和“缺乏熟练的人力资源”。本研究可为行业管理者和政策制定者制定战略提供指导,以克服发展中国家循环农业食品供应链采用大数据分析的障碍。