Suppr超能文献

具有时间调制区域的硅光子环形谐振器中的非互易性。

Non-reciprocity in a silicon photonic ring resonator with time-modulated regions.

作者信息

Zarif Arezoo, Jamshidi Kambiz

出版信息

Opt Express. 2024 Jul 15;32(15):26938-26953. doi: 10.1364/OE.521475.

Abstract

Non-reciprocity and breaking of the time-reversal symmetry is conventionally achieved using magneto-optic materials. However, the integration of these materials with complementary metal-oxide semiconductor (CMOS)-compatible platforms is challenging. Temporal modulation is a well-suited approach for achieving non-reciprocity in integrated photonics. However, existing experimental implementations based on this method in silicon uses traveling-wave modulation in the whole structure or tandem ring or waveguide modulators, and they lead to high insertion loss and large footprint. In this work we achieve, to the best of our knowledge, the first experimental demonstration of non-reciprocity in a compact single silicon photonic ring resonator with time-modulated regions, fabricated with a CMOS-compatible commercial foundry. We demonstrate symmetry breaking of counter-rotating modes in an active silicon photonic ring resonator by applying phase-shifted RF signals to only two small p-i-n junctions on the ring, without employing traveling-wave modulation in the whole structure. The non-reciprocity is caused by the cross-coupling between the counter-rotating modes of the ring, which breaks their degeneracy. By reversing the polarity of the RF phase difference (e.g. (45°,-45°) asymmetric phases) opposite resonance wavelengths are obtained, with a 16-dB contrast between the transmissions of the asymmetric phases and a low insertion loss of 0.6 dB under 27 dBm RF power. We achieve the highest ratio of the asymmetric transmission to the insertion loss, among the state-of-the-art silicon non-reciprocal integrated optical structures based on time varying modulation. The non-reciprocal ring can be used as a magnetic-free, low-loss, compact, and CMOS-compatible integrated optical isolator.

摘要

传统上,非互易性和时间反演对称性的打破是通过磁光材料来实现的。然而,将这些材料与互补金属氧化物半导体(CMOS)兼容平台集成具有挑战性。时间调制是在集成光子学中实现非互易性的一种非常合适的方法。然而,现有的基于该方法在硅中的实验实现采用了整个结构中的行波调制或串联环形或波导调制器,这导致了高插入损耗和大尺寸。在这项工作中,据我们所知,我们首次在具有时间调制区域的紧凑型单硅光子环形谐振器中实现了非互易性的实验演示,该谐振器是由与CMOS兼容的商业代工厂制造的。我们通过仅向环上的两个小p-i-n结施加相移射频信号,而不在整个结构中采用行波调制,证明了有源硅光子环形谐振器中反向旋转模式的对称性打破。非互易性是由环的反向旋转模式之间的交叉耦合引起的,这打破了它们的简并性。通过反转射频相位差的极性(例如(45°,-45°)不对称相位),可以获得相反的谐振波长,不对称相位的传输之间具有16 dB的对比度,在27 dBm射频功率下插入损耗低至0.6 dB。在基于时变调制的最先进的硅非互易集成光学结构中,我们实现了不对称传输与插入损耗的最高比值。该非互易环可用作无磁、低损耗、紧凑且与CMOS兼容的集成光学隔离器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验