Huang Shenyu, Xie Jiajun, Yang Boyuan, Gao Qi, Ye Juan
Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
Front Cell Dev Biol. 2024 Oct 30;12:1459336. doi: 10.3389/fcell.2024.1459336. eCollection 2024.
This study aims to develop a diffusion-based workflow to precisely predict postoperative appearance in blepharoptosis patients.
We developed PtosisDiffusion, a training-free workflow that combines face mesh with ControlNet for accurate post-operative predictions, and evaluated it using 39 preoperative photos from blepharoptosis patients. The performance of PtosisDiffusion was compared against three other diffusion-based methods: Conditional Diffusion, Repaint, and Dragon Diffusion.
PtosisDiffusion demonstrated superior performance in subjective evaluations, including overall rating, correction, and double eyelid formation. Statistical analyses confirmed that PtosisDiffusion achieved the highest overlap ratio (0.87 0.07) and an MPLPD ratio close to 1 (1.01 0.10). The model also showed robustness in extreme cases, and ablation studies confirmed the necessity of each model component.
PtosisDiffusion generates accurate postoperative appearance predictions for ptosis patients using only preoperative photographs. Among the four models tested, PtosisDiffusion consistently outperformed the others in both subjective and statistical evaluation.
本研究旨在开发一种基于扩散的工作流程,以精确预测上睑下垂患者的术后外观。
我们开发了PtosisDiffusion,这是一种无需训练的工作流程,它将面部网格与ControlNet相结合以进行准确的术后预测,并使用39张上睑下垂患者的术前照片对其进行评估。将PtosisDiffusion的性能与其他三种基于扩散的方法进行比较:条件扩散、重新绘制和龙扩散。
PtosisDiffusion在主观评估中表现出卓越性能,包括总体评分、矫正效果和双眼皮形成。统计分析证实,PtosisDiffusion实现了最高的重叠率(0.87±0.07)和接近1的MPLPD比率(1.01±0.10)。该模型在极端情况下也表现出稳健性,消融研究证实了每个模型组件的必要性。
PtosisDiffusion仅使用术前照片就能为上睑下垂患者生成准确的术后外观预测。在测试的四个模型中,PtosisDiffusion在主观和统计评估中均始终优于其他模型。