Suppr超能文献

评估带有多叶准直器误差的乳腺癌调强放疗计划中伽马通过率与临床剂量学变化之间的相关性:来自ArcCHECK质量保证系统的观点

Assessing the correlation between Gamma passing rate and clinical dosimetric variations in breast cancer IMRT plans with multi-leaf collimator errors: perspectives from the ArcCHECK QA system.

作者信息

Li Xiuquan, Deng Jia, Wu Xiangyang, Yang Hang, Huang Dengdian

机构信息

Department of Radiation Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, Shaanxi, China.

Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

出版信息

Radiat Environ Biophys. 2025 Mar;64(1):55-65. doi: 10.1007/s00411-024-01097-w. Epub 2024 Nov 14.

Abstract

This study aimed to comprehensively investigate the influence of multi-leaf collimator (MLC) position errors on both the clinical absolute dose distribution and Gamma passing rate (%GP) in intensity-modulated radiation therapy (IMRT) plans for breast cancer. Additionally, the correlation between %GP and the clinical absolute dose relative difference (%DE) caused by MLC position errors was analysed. Ten IMRT plans for breast cancer were randomly selected. Systematic and random MLC position errors were introduced into DICOM files representing the investigated treatment plans by modifying the plan files and adjusting the MLC positions. Systematic errors were categorized as MLC opening errors, closing errors, and shift errors. The %DE in the tumour planning target volume (PTV) and organs at risk (OARs) caused by MLC errors were statistically analyzed using dose-volume histogram (DVH) analysis. The ArcCHECK quality assurance (QA) system was used to detect the %GP differences between baseline plans and plans with MLC errors. The correlation between %GP and %DE was obtained using linear regression methods. The results of this study indicate that MLC opening and closing errors have a significant impact on %DE and %GP in IMRT plans for breast cancer. Opening and closing errors can be detected at a gamma level of 3%/2 mm, if error values are greater than or equal to 0.5 mm, and %GP can predict DVH dosimetric changes caused by MLC opening and closing errors. It is concluded that DVH-based verification of IMRT plans can serve as an adjunct method to Gamma analysis to improve QA accuracy for breast cancer cases. Additionally, it is concluded that greater attention should be given to MLC leaf opening and closing errors in clinical practice.

摘要

本研究旨在全面调查多叶准直器(MLC)位置误差对乳腺癌调强放射治疗(IMRT)计划中临床绝对剂量分布和伽马通过率(%GP)的影响。此外,还分析了%GP与由MLC位置误差引起的临床绝对剂量相对差异(%DE)之间的相关性。随机选择了10个乳腺癌IMRT计划。通过修改计划文件和调整MLC位置,将系统和随机的MLC位置误差引入代表所研究治疗计划的DICOM文件中。系统误差分为MLC打开误差、关闭误差和移位误差。使用剂量体积直方图(DVH)分析对由MLC误差引起的肿瘤计划靶体积(PTV)和危及器官(OARs)中的%DE进行统计分析。使用ArcCHECK质量保证(QA)系统检测基线计划与存在MLC误差的计划之间的%GP差异。使用线性回归方法获得%GP与%DE之间的相关性。本研究结果表明,MLC打开和关闭误差对乳腺癌IMRT计划中的%DE和%GP有显著影响。如果误差值大于或等于0.5 mm,在3%/2 mm的伽马水平下可以检测到打开和关闭误差,并且%GP可以预测由MLC打开和关闭误差引起的DVH剂量学变化。得出的结论是,基于DVH的IMRT计划验证可作为伽马分析的辅助方法,以提高乳腺癌病例的QA准确性。此外,得出的结论是,在临床实践中应更加关注MLC叶片的打开和关闭误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c3e/11971205/a228b9ddbd21/411_2024_1097_Fig1_HTML.jpg

相似文献

2
A study on the effect of detector resolution on gamma index passing rate for VMAT and IMRT QA.
J Appl Clin Med Phys. 2018 Mar;19(2):230-248. doi: 10.1002/acm2.12285. Epub 2018 Feb 20.
4
Biological consequences of MLC calibration errors in IMRT delivery and QA.
Med Phys. 2012 Apr;39(4):1917-24. doi: 10.1118/1.3692177.
5
Comparison of dosimetric effects of MLC positional errors on VMAT and IMRT plans for SBRT radiotherapy in non-small cell lung cancer.
PLoS One. 2022 Dec 1;17(12):e0278422. doi: 10.1371/journal.pone.0278422. eCollection 2022.
7
Correlation between gamma passing rate and complexity of IMRT plan due to MLC position errors.
Phys Med. 2018 Mar;47:112-120. doi: 10.1016/j.ejmp.2018.03.003. Epub 2018 Mar 8.
8
Impact of the MLC leaf-tip model in a commercial TPS: Dose calculation limitations and IROC-H phantom failures.
J Appl Clin Med Phys. 2020 Feb;21(2):82-88. doi: 10.1002/acm2.12819. Epub 2020 Jan 21.
9
A method to reconstruct and apply 3D primary fluence for treatment delivery verification.
J Appl Clin Med Phys. 2017 Jan;18(1):128-138. doi: 10.1002/acm2.12017. Epub 2016 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验