Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA.
J Appl Clin Med Phys. 2020 Feb;21(2):82-88. doi: 10.1002/acm2.12819. Epub 2020 Jan 21.
Treatment planning system (TPS) dose calculation is sensitive to multileaf collimator (MLC) modeling, especially when treating with intensity-modulated radiation therapy (IMRT) or VMAT. This study investigates the dosimetric impact of the MLC leaf-tip model in a commercial TPS (RayStation v.6.1). The detectability of modeling errors was assessed through both measurements with an anthropomorphic head-and-neck phantom and patient-specific IMRT QA using a 3D diode array.
An Agility MLC (Elekta Inc.) was commissioned in RayStation. Nine IMRT and VMAT plans were optimized to treat the head-and-neck phantom from the Imaging and Radiation Oncology Core Houston branch (IROC-H). Dose distributions for each plan were re-calculated on 27 beam models, varying leaf-tip width (2.0, 4.5, and 6.5 mm) and leaf-tip offset (-2.0 to +2.0 mm) values. Doses were compared to phantom TLD measurements. Patient-specific IMRT QA was performed, and receiver-operating characteristic (ROC) analysis was performed to determine the detectability of modeling errors.
Dose calculations were very sensitive to leaf-tip offset values. Offsets of ±1.0 mm resulted in dose differences up to 10% and 15% in the PTV and spinal cord TLDs respectively. Offsets of ±2.0 mm caused dose deviations up to 50% in the spinal cord TLD. Patient-specific IMRT QA could not reliably detect these deviations, with an ROC area under the curve (AUC) value of 0.537 for a ±1.0 mm change in leaf-tip offset, corresponding to >7% dose deviation. Leaf-tip width had a modest dosimetric impact with <2% and 5.6% differences in the PTV and spinal cord TLDs respectively.
Small changes in the MLC leaf-tip offset in this TPS model can cause large changes in the calculated dose for IMRT and VMAT plans that are difficult to identify through either dose curves or standard patient-specific IMRT QA. These results may, in part, explain the reported high failure rate of IROC-H phantom tests.
治疗计划系统(TPS)的剂量计算对多叶准直器(MLC)建模非常敏感,尤其是在进行强度调制放射治疗(IMRT)或VMAT 治疗时。本研究旨在调查商业 TPS(RayStation v.6.1)中 MLC 叶尖模型的剂量学影响。通过使用人体头部和颈部体模进行测量以及使用三维二极管阵列进行特定于患者的 IMRT QA,评估了建模错误的可检测性。
在 RayStation 中委托了一台 Agility MLC(Elekta Inc.)。为了治疗来自休斯顿成像和放射肿瘤学核心部门(IROC-H)的头部和颈部体模,优化了九个 IMRT 和 VMAT 计划。对每个计划的剂量分布进行了重新计算,涉及 27 个射束模型,这些模型的叶尖宽度(2.0、4.5 和 6.5 毫米)和叶尖偏移(-2.0 至+2.0 毫米)值各不相同。将剂量与体模 TLD 测量值进行了比较。对特定于患者的 IMRT QA 进行了分析,并进行了接收者操作特征(ROC)分析,以确定建模错误的可检测性。
剂量计算对叶尖偏移值非常敏感。偏移量为±1.0 毫米时,在 PTV 和脊髓 TLD 中分别导致剂量差异高达 10%和 15%。偏移量为±2.0 毫米时,脊髓 TLD 中的剂量偏差高达 50%。特定于患者的 IMRT QA 无法可靠地检测到这些偏差,叶尖偏移量变化±1.0 毫米时 ROC 曲线下面积(AUC)值为 0.537,对应于剂量偏差超过 7%。叶尖宽度对剂量的影响较小,在 PTV 和脊髓 TLD 中分别有<2%和 5.6%的差异。
在这个 TPS 模型中,MLC 叶尖偏移量的微小变化会导致 IMRT 和 VMAT 计划的计算剂量发生很大变化,通过剂量曲线或标准的特定于患者的 IMRT QA 很难识别这些变化。这些结果可能部分解释了报告的 IROC-H 体模测试高失败率的原因。