将硅烷偶联剂改性介孔硅纳米粒子用于镁掺杂以降低毒性并促进组织再生

Turn Hood into Good: Recycling Silicon from Mesoporous Silica Nanoparticles through Magnesium Modification to Lower Toxicity and Promote Tissue Regeneration.

机构信息

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.

Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China.

出版信息

ACS Nano. 2024 Nov 26;18(47):32932-32949. doi: 10.1021/acsnano.4c12519. Epub 2024 Nov 14.

Abstract

Mesoporous silica nanoparticles (MSNs) have gained wide application as excellent carrier materials; however, their limited degradation in the biological system and potential chronic toxicity pose challenges to their clinical applications. Previous studies have focused on optimizing the elimination performance of MSNs; interestingly, silicon has been well-documented as an essential body component. Therefore, converting MSNs into a form readily utilizable by the organism is a way to turn waste into a valuable resource. However, the recycling and utilization of MSNs are associated with significant hurdles. This study proposes an approach to impede the formation of siloxane, the crucial core in MSNs, by introducing a gradient concentration of Mg. The invasion of Mg significantly reduces the stability of Si-O-Si bonds by substituting silicon ions while preserving the functional three-dimensional structure. Recycling the increased release of Mg and Si ions enhances cellular antioxidant capacity, reduces oxidative stress reactions, improves mitochondrial function, and regulates macrophage inflammatory states. The proposed approach to converting MSN materials shows significant advantages for tissue regeneration in the periodontal defect model. This study opens an insight for applying MSNs in clinical applications in regenerative medicine.

摘要

介孔硅纳米粒子(MSNs)作为优异的载体材料得到了广泛的应用;然而,其在生物系统中的有限降解性和潜在的慢性毒性对其临床应用提出了挑战。以前的研究集中于优化 MSNs 的消除性能;有趣的是,硅已被充分证明是一种必需的身体成分。因此,将 MSNs 转化为生物体易于利用的形式是将废物转化为有价值资源的一种方式。然而,MSNs 的回收和利用存在重大障碍。本研究提出了一种通过引入 Mg 梯度浓度来阻止 MSNs 中关键核心硅氧烷形成的方法。Mg 的入侵通过取代硅离子显著降低 Si-O-Si 键的稳定性,同时保留了功能三维结构。回收增加释放的 Mg 和 Si 离子可增强细胞抗氧化能力、减少氧化应激反应、改善线粒体功能并调节巨噬细胞炎症状态。所提出的将 MSN 材料转化的方法在牙周缺陷模型中的组织再生方面显示出显著优势。本研究为将 MSNs 应用于再生医学中的临床应用提供了新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索