Suppr超能文献

在呼吸致敏的预测性量子力学模型中捕捉实验证据的差异质量。

Capturing Differential Quality of Experimental Evidence in a Predictive Quantum-Mechanical Model for Respiratory Sensitization.

作者信息

Kostal Jakub, Vaughan Joshua, Blum Kamila, Voutchkova-Kostal Adelina

机构信息

Designing Out Toxicity (DOT) Consulting LLC, 2121 Eisenhower Avenue, Alexandria, Virginia 22314, United States.

The George Washington University, 800 22nd St. NW, Washington, District of Columbia 20052, United States.

出版信息

Chem Res Toxicol. 2024 Dec 16;37(12):1944-1951. doi: 10.1021/acs.chemrestox.4c00289. Epub 2024 Nov 14.

Abstract

Asthma is of concern in occupational toxicology with significant public-health and economic costs. In the absence of benchmark in vivo and in vitro tests, the use of mechanistically sound in silico models is critical to inform hazard and to protect workers from exposure to potentially harmful substances. We recently reported on the computer-aided discovery and REdesign (CADRE) model for respiratory sensitization, which relies on a tiered structure of expert rules, molecular simulations, quantum-mechanics calculations and advanced statistics to accurately identify respiratory sensitizers from first principles. Here, we present an update to this model based on two years of testing in the pharmaceutical space, where we captured the heterogeneity of the underlying experimental evidence in two predictive tiers, thus allowing the practitioner to select an outcome based on their expert assessment of the data reliability and relevance. This user-based tuning of predictive models is critical for end points that lack consensus on what constitutes satisfactory evidence to support a decision in the handling of chemicals for occupational safety.

摘要

哮喘在职业毒理学中备受关注,会产生重大的公共卫生和经济成本。在缺乏基准体内和体外测试的情况下,使用具有可靠机制的计算机模拟模型对于告知危害并保护工人免受潜在有害物质的暴露至关重要。我们最近报道了用于呼吸道致敏的计算机辅助发现与重新设计(CADRE)模型,该模型依赖于专家规则、分子模拟、量子力学计算和高级统计的分层结构,从第一原理准确识别呼吸道致敏剂。在此,我们基于在制药领域两年的测试对该模型进行了更新,我们在两个预测层级中捕捉了基础实验证据的异质性,从而使从业者能够根据他们对数据可靠性和相关性的专家评估来选择结果。对于在职业安全化学品处理决策中何种证据构成令人满意的支持缺乏共识的终点而言,这种基于用户的预测模型调整至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验