Suppr超能文献

常用真菌代谢组学数据分析软件流程比较。

Comparison of commonly used software pipelines for analyzing fungal metabarcoding data.

机构信息

Department of Microbiology, Universität Innsbruck, Innsbruck, Austria.

Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Italy.

出版信息

BMC Genomics. 2024 Nov 14;25(1):1085. doi: 10.1186/s12864-024-11001-x.

Abstract

BACKGROUND

Metabarcoding targeting the internal transcribed spacer (ITS) region is commonly used to characterize fungal communities of various environments. Given their size and complexity, raw ITS sequences are necessarily processed and quality-filtered with bioinformatic pipelines. However, such pipelines are not yet standardized, especially for fungal communities, and those available may produce contrasting results. While some pipelines cluster sequences based on a specified percentage of base pair similarity into operational taxonomic units (OTUs), others utilize denoising techniques to infer amplicon sequencing variants (ASVs). While ASVs are now considered a more accurate representation of taxonomic diversity for prokaryote communities based on 16S rRNA amplicon sequencing, the applicability of this method for fungal ITS sequences is still debated.

RESULTS

Here we compared the performance of two commonly used pipelines DADA2 (inferring ASVs) and mothur (clustering OTUs) on fungal metabarcoding sequences originating from two different environmental sample types (fresh bovine feces and pasture soil). At a 99% OTU similarity threshold, mothur consistently identified a higher fungal richness compared to DADA2. In addition, mothur generated homogenous relative abundances across multiple technical replicates (n = 18), while DADA2 results for the same replicates were highly heterogeneous.

CONCLUSIONS

Our study highlights a potential pipeline-associated bias in fungal metabarcoding data analysis of environmental samples. Based on the homogeneity of relative abundances across replicates and the capacity to detect OTUs/ASVs, we suggest using OTU clustering with a similarity of 97% as the most appropriate option for processing fungal metabarcoding data.

摘要

背景

靶向内部转录间隔区(ITS)区域的代谢条形码技术常用于描述各种环境中的真菌群落。由于其大小和复杂性,原始 ITS 序列必须通过生物信息学管道进行处理和质量过滤。然而,这些管道尚未标准化,特别是对于真菌群落,并且可用的管道可能会产生不同的结果。虽然一些管道基于指定的碱基对相似度百分比将序列聚类为分类操作单元(OTU),但其他管道则利用去噪技术推断扩增子测序变体(ASV)。虽然 ASV 现在被认为是基于 16S rRNA 扩增子测序的原核生物群落中分类多样性的更准确表示,但该方法对于真菌 ITS 序列的适用性仍存在争议。

结果

在这里,我们比较了两种常用管道 DADA2(推断 ASV)和 mothur(聚类 OTU)在来自两种不同环境样本类型(新鲜牛粪便和牧场土壤)的真菌代谢条形码序列上的性能。在 99%的 OTU 相似性阈值下,mothur 始终比 DADA2 鉴定出更高的真菌丰富度。此外,mothur 在多个技术重复(n=18)中生成了均匀的相对丰度,而相同重复的 DADA2 结果则高度异质。

结论

我们的研究强调了环境样本真菌代谢条形码数据分析中潜在的与管道相关的偏差。基于相对丰度在重复之间的均匀性以及检测 OTU/ASV 的能力,我们建议使用相似度为 97%的 OTU 聚类作为处理真菌代谢条形码数据的最适当选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d43/11566164/f4f856ff3f2c/12864_2024_11001_Fig1_HTML.jpg

相似文献

1
Comparison of commonly used software pipelines for analyzing fungal metabarcoding data.
BMC Genomics. 2024 Nov 14;25(1):1085. doi: 10.1186/s12864-024-11001-x.
3
Bioinformatic pipelines combining denoising and clustering tools allow for more comprehensive prokaryotic and eukaryotic metabarcoding.
Mol Ecol Resour. 2021 Aug;21(6):1904-1921. doi: 10.1111/1755-0998.13398. Epub 2021 Apr 27.
4
Comparing DADA2 and OTU clustering approaches in studying the bacterial communities of atopic dermatitis.
J Med Microbiol. 2020 Nov;69(11):1293-1302. doi: 10.1099/jmm.0.001256. Epub 2020 Sep 23.
5
Denoising the Denoisers: an independent evaluation of microbiome sequence error-correction approaches.
PeerJ. 2018 Aug 8;6:e5364. doi: 10.7717/peerj.5364. eCollection 2018.
7
Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies.
PLoS One. 2014 Jun 16;9(6):e97629. doi: 10.1371/journal.pone.0097629. eCollection 2014.
8
An independent evaluation in a CRC patient cohort of microbiome 16S rRNA sequence analysis methods: OTU clustering, DADA2, and Deblur.
Front Microbiol. 2023 Jul 25;14:1178744. doi: 10.3389/fmicb.2023.1178744. eCollection 2023.
10
New insights into biologic interpretation of bioinformatic pipelines for fish eDNA metabarcoding: A case study in Pearl River estuary.
J Environ Manage. 2024 Sep;368:122136. doi: 10.1016/j.jenvman.2024.122136. Epub 2024 Aug 11.

本文引用的文献

1
Enumerating soil biodiversity.
Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2304663120. doi: 10.1073/pnas.2304663120. Epub 2023 Aug 7.
2
A pile of pipelines: An overview of the bioinformatics software for metabarcoding data analyses.
Mol Ecol Resour. 2024 Jul;24(5):e13847. doi: 10.1111/1755-0998.13847. Epub 2023 Aug 7.
3
Extensive intragenomic variation in the internal transcribed spacer region of fungi.
iScience. 2023 Jul 10;26(8):107317. doi: 10.1016/j.isci.2023.107317. eCollection 2023 Aug 18.
5
Fungal taxonomy: current status and research agendas for the interdisciplinary and globalisation era.
Mycology. 2022 Jul 25;14(1):52-59. doi: 10.1080/21501203.2022.2103194. eCollection 2023.
6
DNA barcoding of fungal specimens using PacBio long-read high-throughput sequencing.
Mol Ecol Resour. 2022 Nov;22(8):2871-2879. doi: 10.1111/1755-0998.13663. Epub 2022 Jun 17.
8
Best practices in metabarcoding of fungi: From experimental design to results.
Mol Ecol. 2022 May;31(10):2769-2795. doi: 10.1111/mec.16460. Epub 2022 Apr 20.
10
Fungi as mediators linking organisms and ecosystems.
FEMS Microbiol Rev. 2022 Mar 3;46(2). doi: 10.1093/femsre/fuab058.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验