Suppr超能文献

跟腱扭转程度在影响局部应变大小方面与其长度和厚度相互作用:一项有限元分析。

Degree of twist in the Achilles tendon interacts with its length and thickness in affecting local strain magnitude: a finite element analysis.

作者信息

Enomoto Shota, Furuuchi Shunya, Ishibashi Tatsuki, Yamada Shu, Oda Toshiaki

机构信息

Institute for Promotion of Education and Campus Life, Okayama University, Okayama, Japan.

Graduate School of Science and Technology, Keio University, Yokohama, Japan.

出版信息

Front Bioeng Biotechnol. 2024 Oct 31;12:1445364. doi: 10.3389/fbioe.2024.1445364. eCollection 2024.

Abstract

INTRODUCTION

The relationship between the twisting of the three subtendons of the Achilles tendon (AT) and local strain has received attention in recent years. The present study aimed to elucidate how the degree of twist in the AT affects strain using finite element (FE) analysis, while also considering other geometries (e.g., length, thickness, and width) and their combinations.

METHODS

A total of 59 FE models with different degrees of twist and geometries were created. A lengthening force (-axis) of 1,000 N was applied to each subtendon (total: 3,000 N). The average value of the first principal Lagrange strain was calculated for the middle third of the total length of the model.

RESULTS

Statistical (stepwise) analysis revealed the effects of the degree of twist, other geometries, and their combinations on AT strain. The main findings were as follows: (1) a greater degree of twist resulted in higher average strains ( = 9.28, < 0.0001) and (2) the effect of the degree of twist on the strain depended on dimensions of thickness of the most distal part of the AT ( = -4.49, < 0.0001) and the length of the AT ( = -3.82, = 0.0005). Specifically, when the thickness of the most distal part and length were large, the degree of twist had a small effect on the first principal Lagrange strain; however, when the thickness of the most distal part and length were small, a greater degree of twist results in higher first principal Lagrange strain.

CONCLUSION

These results indicate that the relationship between the degree of twist and local strain is complex and may not be accurately assessed by FE simulation using a single geometry.

摘要

引言

近年来,跟腱(AT)三条分支腱的扭转与局部应变之间的关系受到了关注。本研究旨在通过有限元(FE)分析阐明AT的扭转程度如何影响应变,同时考虑其他几何参数(如长度、厚度和宽度)及其组合。

方法

创建了总共59个具有不同扭转程度和几何参数的FE模型。对每个分支腱施加1000 N的延长力(-轴)(总计:3000 N)。计算模型总长度中间三分之一处的第一主拉格朗日应变的平均值。

结果

统计(逐步)分析揭示了扭转程度、其他几何参数及其组合对AT应变的影响。主要发现如下:(1)更大的扭转程度导致更高的平均应变( = 9.28, < 0.0001),以及(2)扭转程度对应变的影响取决于AT最远端部分的厚度尺寸( = -4.49, < 0.0001)和AT的长度( = -3.82, = 0.0005)。具体而言,当最远端部分的厚度和长度较大时,扭转程度对第一主拉格朗日应变的影响较小;然而,当最远端部分的厚度和长度较小时,更大的扭转程度会导致更高的第一主拉格朗日应变。

结论

这些结果表明,扭转程度与局部应变之间的关系很复杂,使用单一几何参数的FE模拟可能无法准确评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dfd/11561387/28dd6eb62615/fbioe-12-1445364-g001.jpg

相似文献

1
Degree of twist in the Achilles tendon interacts with its length and thickness in affecting local strain magnitude: a finite element analysis.
Front Bioeng Biotechnol. 2024 Oct 31;12:1445364. doi: 10.3389/fbioe.2024.1445364. eCollection 2024.
2
3D Models Reveal the Influence of Achilles Subtendon Twist on Strain and Energy Storage.
Front Bioeng Biotechnol. 2021 Feb 5;9:539135. doi: 10.3389/fbioe.2021.539135. eCollection 2021.
3
Achilles Subtendon Structure and Behavior as Evidenced From Tendon Imaging and Computational Modeling.
Front Sports Act Living. 2020 Jun 23;2:70. doi: 10.3389/fspor.2020.00070. eCollection 2020.
4
Design and validation of a finite element model of the aponeurotic and free Achilles tendon.
J Orthop Res. 2023 Mar;41(3):534-545. doi: 10.1002/jor.25408. Epub 2022 Jul 25.
6
Achilles tendon compliance influences tendon loading more than Achilles tendon twist in Achilles tendinopathy: a musculoskeletal modeling approach.
Front Bioeng Biotechnol. 2024 Jul 18;12:1399611. doi: 10.3389/fbioe.2024.1399611. eCollection 2024.
7
Does free tendon length influence the injury risk of the Achilles tendon? A finite element study.
J Exp Orthop. 2024 Nov 14;11(4):e70036. doi: 10.1002/jeo2.70036. eCollection 2024 Oct.
8
Subject-Specific 3D Models to Investigate the Influence of Rehabilitation Exercises and the Twisted Structure on Achilles Tendon Strains.
Front Bioeng Biotechnol. 2022 Jul 6;10:914137. doi: 10.3389/fbioe.2022.914137. eCollection 2022.
10
3D characterization of the triple-bundle Achilles tendon from in vivo high-field MRI.
J Orthop Res. 2023 Oct;41(10):2315-2321. doi: 10.1002/jor.25654. Epub 2023 Jul 10.

引用本文的文献

1
Shear wave propagation in the Achilles subtendons is modulated by helical twist and non-uniform loading.
R Soc Open Sci. 2025 Jun 18;12(6):241058. doi: 10.1098/rsos.241058. eCollection 2025 Jun.

本文引用的文献

1
Estimation of the Achilles tendon twist in vivo by individual triceps surae muscle stimulation.
J Anat. 2025 Jan;246(1):86-97. doi: 10.1111/joa.14138. Epub 2024 Sep 30.
3
Intratendinous pressure of the Achilles tendon during exercise is related to the degree of tendon torsion.
Scand J Med Sci Sports. 2023 Nov;33(11):2230-2238. doi: 10.1111/sms.14467. Epub 2023 Aug 22.
4
3D characterization of the triple-bundle Achilles tendon from in vivo high-field MRI.
J Orthop Res. 2023 Oct;41(10):2315-2321. doi: 10.1002/jor.25654. Epub 2023 Jul 10.
5
Subject-Specific 3D Models to Investigate the Influence of Rehabilitation Exercises and the Twisted Structure on Achilles Tendon Strains.
Front Bioeng Biotechnol. 2022 Jul 6;10:914137. doi: 10.3389/fbioe.2022.914137. eCollection 2022.
6
Design and validation of a finite element model of the aponeurotic and free Achilles tendon.
J Orthop Res. 2023 Mar;41(3):534-545. doi: 10.1002/jor.25408. Epub 2022 Jul 25.
7
3D Models Reveal the Influence of Achilles Subtendon Twist on Strain and Energy Storage.
Front Bioeng Biotechnol. 2021 Feb 5;9:539135. doi: 10.3389/fbioe.2021.539135. eCollection 2021.
9
Achilles Subtendon Structure and Behavior as Evidenced From Tendon Imaging and Computational Modeling.
Front Sports Act Living. 2020 Jun 23;2:70. doi: 10.3389/fspor.2020.00070. eCollection 2020.
10
Evaluation of transverse poroelastic mechanics of tendon using osmotic loading and biphasic mixture finite element modeling.
J Biomech. 2020 Aug 26;109:109892. doi: 10.1016/j.jbiomech.2020.109892. Epub 2020 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验