Yan Qingqing, An Shuyi, Yu Liang, Li Shenfang, Wu Xiaonan, Dong Siqi, Xiong Shunshun, Wang Hao, Wang Sujing, Du Jiangfeng
CAS Key Laboratory of Microscale Magnetic Resonance, Suzhou Institute for Advanced Research, Hefei National Laboratory, University of Science and Technology of China, Hefei, China.
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, China.
Nat Commun. 2024 Nov 15;15(1):9911. doi: 10.1038/s41467-024-54348-1.
Molecular recognition is a fundamental function of natural systems that ensures biological activity. This is achieved through the sieving effect, host-guest interactions, or both in biological environments. Recent advancements in multifunctional proteins reveal a new dimension of functional organization that goes beyond single-function molecular recognition, emphasizing the need for artificial multifunctional materials in industrial applications. Herein, we have designed a porous NiO-cubane squarate coordination polymer as an artificial molecular recognition host, drawing inspiration from the structural and functional features of natural enzymes. A comprehensive assessment of the material's ability to distinguish target species under different operating conditions was carried out. The results confirm its sieving function through hexane isomers separation, host-guest interaction function via xenon/krypton separation, and dual presence of sieving and interaction through carbon dioxide/nitrogen separation. Additionally, the material demonstrates good stability and feasibility for large-scale production, indicating its practical potential. Our findings provide a bio-inspired multifunctional recognition material for chemical separations as proof-of-concept while offering solutions to advance artificial multifunctional materials adaptable to other applications beyond chemical separations.
分子识别是自然系统的一项基本功能,可确保生物活性。这是通过生物环境中的筛分效应、主客体相互作用或两者共同作用来实现的。多功能蛋白质的最新进展揭示了功能组织的一个新维度,超越了单功能分子识别,强调了工业应用中人工多功能材料的必要性。在此,我们从天然酶的结构和功能特征中汲取灵感,设计了一种多孔氧化镍-立方烷方酸配位聚合物作为人工分子识别主体。对该材料在不同操作条件下区分目标物种的能力进行了全面评估。结果证实了其通过己烷异构体分离的筛分功能、通过氙/氪分离的主客体相互作用功能,以及通过二氧化碳/氮气分离同时存在的筛分和相互作用。此外,该材料具有良好的稳定性和大规模生产的可行性,表明了其实际应用潜力。我们的研究结果提供了一种受生物启发的用于化学分离的多功能识别材料作为概念验证,同时为推进适用于化学分离以外其他应用的人工多功能材料提供了解决方案。