Laboratory for Ophthalmic Image Analysis (OPTIMA), Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria.
Center for Medical Data Science, Institute of Medical Statistics, Medical University of Vienna, Vienna, Austria.
Sci Rep. 2024 Nov 15;14(1):28165. doi: 10.1038/s41598-024-72522-9.
To examine the morphological impact of deep learning (DL)-quantified biomarkers on point-wise sensitivity (PWS) using microperimetry (MP) and optical coherence tomography (OCT) in intermediate AMD (iAMD). Patients with iAMD were examined by OCT (Spectralis). DL-based algorithms quantified ellipsoid zone (EZ)-thickness, hyperreflective foci (HRF) and drusen volume. Outer nuclear layer (ONL)-thickness and subretinal drusenoid deposits (SDD) were quantified by human experts. All patients completed four MP examinations using an identical custom 45 stimuli grid on MP-3 (NIDEK) and MAIA (CenterVue). MP stimuli were co-registered with corresponding OCT using image registration algorithms. Multivariable mixed-effect models were calculated. 3.600 PWS from 20 eyes of 20 patients were analyzed. Decreased EZ thickness, decreased ONL thickness, increased HRF and increased drusen volume had a significant negative effect on PWS (all p < 0.001) with significant interaction with eccentricity (p < 0.001). Mean PWS was 26.25 ± 3.43 dB on MP3 and 22.63 ± 3.69 dB on MAIA. Univariate analyses revealed a negative association of PWS and SDD (p < 0.001). Subclinical changes in EZ integrity, HRF and drusen volume are quantifiable structural biomarkers associated with reduced retinal function. Topographic co-registration between structure on OCT volumes and sensitivity in MP broadens the understanding of pathognomonic biomarkers with potential for evaluation of quantifiable functional endpoints.
利用光学相干断层扫描(OCT)和微视野计(MP),研究深度学习(DL)量化生物标志物对中间型年龄相关性黄斑变性(iAMD)患者点敏感性(PWS)的形态学影响。
使用 Spectralis 对 iAMD 患者进行 OCT 检查。基于 DL 的算法对椭圆体带厚度(EZ-厚度)、高反射灶(HRF)和玻璃膜疣体积进行量化。人类专家对外核层(ONL)厚度和视网膜下玻璃膜疣沉积(SDD)进行量化。所有患者均使用 MP-3(尼德克)和 MAIA(CenterVue)上相同的定制 45 个刺激网格完成 4 次 MP 检查。使用图像配准算法将 MP 刺激与相应的 OCT 配准。计算多变量混合效应模型。对 20 名患者的 20 只眼的 3600 个 PWS 进行分析。EZ 厚度降低、ONL 厚度降低、HRF 增加和玻璃膜疣体积增加对 PWS 有显著的负向影响(均 P<0.001),且与偏心度有显著的交互作用(P<0.001)。MP3 上的平均 PWS 为 26.25±3.43dB,MAIA 上的平均 PWS 为 22.63±3.69dB。单变量分析显示 PWS 与 SDD 呈负相关(P<0.001)。EZ 完整性、HRF 和玻璃膜疣体积的亚临床变化是与视网膜功能降低相关的可量化结构生物标志物。OCT 体积上的结构与 MP 中的敏感性之间的拓扑配准拓宽了对潜在有评估可量化功能终点的特征性生物标志物的理解。