Suppr超能文献

比较两种代谢组学平台以从血清分析中发现危重症患者的生物标志物。

Comparison of two metabolomics-platforms to discover biomarkers in critically ill patients from serum analysis.

作者信息

Fonseca Tiago A H, Von Rekowski Cristiana P, Araújo Rúben, Oliveira M Conceição, Justino Gonçalo C, Bento Luís, Calado Cecília R C

机构信息

NMS - NOVA Medical School, FCM - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria 130, 1169-056, Lisbon, Portugal; ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007, Lisbon, Portugal; CHRC - Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082, Lisbon, Portugal.

Centro de Química Estrutural - Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.

出版信息

Comput Biol Med. 2025 Jan;184:109393. doi: 10.1016/j.compbiomed.2024.109393. Epub 2024 Nov 15.

Abstract

Serum metabolome analysis is essential for identifying disease biomarkers and predicting patient outcomes in precision medicine. Thus, this study aims to compare Ultra-High Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS) with Fourier Transform Infrared (FTIR) spectroscopy in acquiring the serum metabolome of critically ill patients, associated with invasive mechanical ventilation (IMV), and predicting death. Three groups of 8 patients were considered. Group A did not require IMV and survived hospitalization, while Groups B and C required IMV. Group C patients died a median of 5 days after sample harvest. Good prediction models were achieved when comparing groups A to B and B to C using both platforms' data, with UHPLC-HRMS showing 8-17 % higher accuracies (≥83 %). However, developing predictive models using metabolite sets was not feasible when comparing unbalanced populations, i.e., Groups A and B combined to Group C. Alternatively, FTIR-spectroscopy enabled the development of a model with 83 % accuracy. Overall, UHPLC-HRMS data yields more robust prediction models when comparing homogenous populations, potentially enhancing understanding of metabolic mechanisms and improving patient therapy adjustments. FTIR-spectroscopy is more suitable for unbalanced populations. Its simplicity, speed, cost-effectiveness, and high-throughput operation make it ideal for large-scale studies and clinical translation in complex populations.

摘要

血清代谢组分析对于在精准医学中识别疾病生物标志物和预测患者预后至关重要。因此,本研究旨在比较超高效液相色谱-高分辨率质谱(UHPLC-HRMS)与傅里叶变换红外(FTIR)光谱法在获取与有创机械通气(IMV)相关的危重症患者血清代谢组以及预测死亡方面的效果。研究纳入了三组,每组8名患者。A组患者无需IMV且住院期间存活,而B组和C组患者需要IMV。C组患者在样本采集后中位数5天死亡。使用两个平台的数据比较A组与B组以及B组与C组时,均建立了良好的预测模型,UHPLC-HRMS的准确率高出8%-17%(≥83%)。然而,在比较不均衡人群(即A组和B组合并与C组)时,使用代谢物集建立预测模型并不可行。另外,FTIR光谱法能够建立一个准确率为83%的模型。总体而言,在比较同质人群时,UHPLC-HRMS数据能产生更稳健的预测模型,这可能有助于增强对代谢机制的理解并改善患者治疗调整。FTIR光谱法更适合不均衡人群。其操作简单、速度快、性价比高且具有高通量特性,使其成为复杂人群大规模研究和临床转化的理想选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验