Li Yanhong, Zhao Wenchang, Zhou Ying, Tang Shuxian, Wang Shiyu, Zheng Yutong, Wang Zuankai, Zhu Pingan
Department of Mechanical Engineering, City University of Hong Kong, 999077, Hong Kong, China.
Department of Mechanical Engineering, Hong Kong Polytechnic University, 999077, Hong Kong, China.
Nat Commun. 2024 Nov 16;15(1):9943. doi: 10.1038/s41467-024-54288-w.
The rebound of liquid droplets on solid surfaces exhibits behavior reminiscent of elastic spheres, albeit with distinct contact dynamics. While the rapid detachment of droplets from surfaces holds significant relevance for various applications, previous endeavors relying on engineered surfaces can only reduce the contact time to several milliseconds, primarily due to capillary effects dominating droplet bounce. Here, we present ultrafast rebound by designing heterogeneous core-shell droplets encapsulating a particle (DEP), which achieves an unprecedentedly short contact time of 0.3 ms and 0.05 ms with polydimethylsiloxane and glass particles, respectively. This remarkable contact-time reduction is universally applicable to diverse systems, including both water and oil droplets, elastic and rigid particles, super-repellent and superlyophilic surfaces, and is effective across a wide range of impact velocities. Beyond exhibiting liquid-like dynamics, DEP manifests solid-like behavior owing to asynchronized motions between the particle and the droplet, which effectively breaks down the dominance of capillarity. With systematic experimental and analytical studies, we delineate contact times in three bouncing regimes and identify critical conditions governing regime transitions. DEP amalgamates the bouncing dynamics of both solids and liquids, offering a robust and versatile strategy for tailoring contact time to suit diverse applications involving solid-liquid composite systems.
液滴在固体表面的反弹呈现出类似于弹性球体的行为,尽管其接触动力学有所不同。虽然液滴从表面的快速脱离在各种应用中具有重要意义,但以往依赖工程表面的方法只能将接触时间缩短至几毫秒,这主要是由于毛细作用主导了液滴的反弹。在此,我们通过设计包裹粒子的异质核壳液滴(DEP)实现了超快反弹,该液滴与聚二甲基硅氧烷和玻璃粒子的接触时间分别达到了前所未有的0.3毫秒和0.05毫秒。这种显著的接触时间缩短普遍适用于各种系统,包括水滴和油滴、弹性和刚性粒子、超疏水和超亲液表面,并且在广泛的撞击速度范围内均有效。除了呈现出类似液体的动力学外,由于粒子与液滴之间的异步运动,DEP还表现出类似固体的行为,这有效地打破了毛细作用的主导地位。通过系统的实验和分析研究,我们描绘了三种反弹模式下的接触时间,并确定了控制模式转变的关键条件。DEP融合了固体和液体的反弹动力学,为调整接触时间以适应涉及固液复合系统的各种应用提供了一种强大且通用的策略。