Fattahi Asieh Sadat, Hoseini Maryam, Dehghani Toktam, Nezhad Noor Nia Raheleh Ghouchan, Naseri Zeinab, Ebrahimzadeh Amirali, Mehri Ali, Eslami Saeid
Department of Surgery, Faculty of Medicine, Endoscopic and Minimally Invasive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
General Surgeon, Department of Surgery, Endoscopic and Minimally Invasive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
Comput Biol Med. 2025 Jan;184:109412. doi: 10.1016/j.compbiomed.2024.109412. Epub 2024 Nov 16.
Axillary lymph node dissection (ALND) is the standard of care for breast cancer patients with positive sentinel lymph nodes (SLN), which are the first lymph nodes that drain the breast. However, many patients with positive SLNs may not have additional positive nodes, making the prediction of non-sentinel lymph node (NSLN) metastasis challenging. Reliable prognostic tools are essential for accurately assessing NSLN metastasis. The Memorial Sloan Kettering Cancer Center (MSKCC) nomogram has demonstrated effectiveness in this context, but it requires further evaluation within the Iranian breast cancer population. While ALND remains the gold standard, its unnecessary application in patients without evidence of additional positive nodes raises concerns due to potential complications such as lymphedema, nerve injury, and shoulder joint dysfunction. Furthermore, integrating Artificial Intelligence (AI) and Machine Learning (ML) techniques presents an opportunity to enhance the precision of NSLN metastasis predictions.
This study conducts an extensive comparative analysis between the MSKCC nomogram and various ML models to predict NSLN metastasis, utilizing a dataset of Iranian breast cancer patients. Employing eXplainable Artificial Intelligence (XAI) methodologies, we analyzed 16 clinical features across a cohort of 183 patients. Our methodology includes rigorous statistical evaluations and the training and validation of ML models to assess the precision and robustness of these models compared to the MSKCC nomogram.
Our analysis revealed that the Random Forest (RF) model outperformed the MSKCC nomogram, achieving an accuracy of 72.2 % and an AUC of 0.77, compared to the nomogram's AUC of 0.73. Logistic Regression (LR) also demonstrated competitive performance with an accuracy of 65 % and an AUC of 0.73. The RF model exhibited high sensitivity (75 %) and precision (73 %), effectively identifying critical predictors of NSLN metastasis, including the presence of ductal carcinoma in situ (DCIS) and tumor characteristics such as type and grade. Explainable AI techniques, particularly SHAP values, provided insights into feature importance, enhancing model interpretability.
Our study offers a comprehensive comparison between ML models and the MSKCC nomogram for predicting NSLN metastasis among Iranian breast cancer patients. These findings contribute valuable insights to the discourse on personalized treatment approaches, emphasizing the need for tailored prognostic tools across diverse populations. The implications of this research extend to clinical decision-making, potentially improving the accuracy and efficacy of breast cancer management within the Iranian healthcare landscape.
腋窝淋巴结清扫术(ALND)是前哨淋巴结(SLN)阳性的乳腺癌患者的标准治疗方法,前哨淋巴结是引流乳腺的首批淋巴结。然而,许多前哨淋巴结阳性的患者可能没有其他阳性淋巴结,这使得预测非前哨淋巴结(NSLN)转移具有挑战性。可靠的预后工具对于准确评估NSLN转移至关重要。纪念斯隆凯特琳癌症中心(MSKCC)列线图在这方面已显示出有效性,但需要在伊朗乳腺癌人群中进一步评估。虽然ALND仍然是金标准,但在没有其他阳性淋巴结证据的患者中不必要地应用该方法会引发人们对诸如淋巴水肿、神经损伤和肩关节功能障碍等潜在并发症的担忧。此外,整合人工智能(AI)和机器学习(ML)技术为提高NSLN转移预测的准确性提供了契机。
本研究利用伊朗乳腺癌患者数据集,对MSKCC列线图和各种ML模型进行了广泛的比较分析,以预测NSLN转移。采用可解释人工智能(XAI)方法,我们分析了183例患者队列中的16项临床特征。我们的方法包括严格的统计评估以及ML模型的训练和验证,以评估这些模型相对于MSKCC列线图的准确性和稳健性。
我们的分析表明,随机森林(RF)模型优于MSKCC列线图,准确率达到72.2%,曲线下面积(AUC)为0.77,而列线图的AUC为0.73。逻辑回归(LR)也表现出具有竞争力的性能,准确率为65%,AUC为0.73。RF模型表现出高敏感性(75%)和精确性(73%),有效识别了NSLN转移的关键预测因素,包括原位导管癌(DCIS)的存在以及肿瘤类型和分级等特征。可解释人工智能技术,特别是SHAP值,提供了关于特征重要性的见解,增强了模型的可解释性。
我们的研究对ML模型和MSKCC列线图在预测伊朗乳腺癌患者NSLN转移方面进行了全面比较。这些发现为个性化治疗方法的讨论提供了有价值的见解,强调了针对不同人群定制预后工具的必要性。这项研究的意义延伸到临床决策,可能提高伊朗医疗环境中乳腺癌管理的准确性和有效性。