Rahaman Md Mamunur, Millar Ewan K A, Meijering Erik
School of Computer Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
Department of Anatomical Pathology, NSW Health Pathology, St. George Hospital, Sydney NSW 2217, Australia; St. George and Sutherland Clinical School, University of New South Wales, Sydney NSW 2052, Australia; Faculty of Medicine & Health Sciences, Western Sydney University, Sydney NSW 2560, Australia.
J Adv Res. 2024 Nov 16. doi: 10.1016/j.jare.2024.11.013.
Cancer is a leading cause of death worldwide, necessitating effective diagnostic tools for early detection and treatment. Histopathological image analysis is crucial for cancer diagnosis but is often hindered by human error and variability. This study introduces HistopathAI, a hybrid network designed for histopathology image classification, aimed at enhancing diagnostic precision and efficiency in clinical pathology.
The primary goal of this study is to demonstrate that HistopathAI, leveraging supervised contrastive learning (SCL) and hybrid deep feature fusion (HDFF), can significantly improve the accuracy of histopathological image classification, including scenarios involving imbalanced datasets.
HistopathAI integrates features from EfficientNetB3 and ResNet50, using HDFF to provide a rich representation of histopathology images. The framework employs a sequential methodology, transitioning from feature learning to classifier learning, mirroring the essence of contrastive learning with the aim of producing superior feature representations. The model combines SCL for feature representation with cross-entropy (CE) loss for classification. We evaluated HistopathAI across seven publicly available datasets and one private dataset, covering various histopathology domains.
HistopathAI achieved state-of-the-art classification accuracy across all datasets, demonstrating superior performance in both binary and multiclass classification tasks. Statistical testing confirmed that HistopathAI's performance is significantly better than baseline models, ensuring robust and reliable improvements.
HistopathAI offers a robust tool for histopathology image classification, enhancing diagnostic accuracy and supporting the transition to digital pathology. This framework has the potential to improve cancer diagnosis and patient outcomes, paving the way for broader clinical application. The code is available on https://github.com/Mamunur-20/HistopathAI.
癌症是全球主要的死亡原因之一,因此需要有效的诊断工具用于早期检测和治疗。组织病理学图像分析对于癌症诊断至关重要,但常常受到人为误差和变异性的阻碍。本研究介绍了HistopathAI,这是一种为组织病理学图像分类设计的混合网络,旨在提高临床病理学诊断的准确性和效率。
本研究的主要目标是证明,利用监督对比学习(SCL)和混合深度特征融合(HDFF)的HistopathAI能够显著提高组织病理学图像分类的准确性,包括涉及不平衡数据集的情况。
HistopathAI整合了EfficientNetB3和ResNet50的特征,使用HDFF来提供组织病理学图像的丰富表示。该框架采用顺序方法,从特征学习过渡到分类器学习,反映了对比学习的本质,旨在产生卓越的特征表示。该模型将用于特征表示的SCL与用于分类的交叉熵(CE)损失相结合。我们在七个公开可用数据集和一个私有数据集上对HistopathAI进行了评估,涵盖了各种组织病理学领域。
HistopathAI在所有数据集中均达到了当前最优的分类准确率,在二分类和多分类任务中均表现出卓越性能。统计测试证实,HistopathAI的性能显著优于基线模型,确保了稳健且可靠的改进。
HistopathAI为组织病理学图像分类提供了一个强大的工具,提高了诊断准确性,并支持向数字病理学的转变。该框架有潜力改善癌症诊断和患者预后,为更广泛的临床应用铺平道路。代码可在https://github.com/Mamunur-20/HistopathAI上获取。